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1.1 Is a sum of increasing function also increasing?

I. W.T.S:
if f, g are increasing functions on an interval I, then f + ¢ is also increasing on an interval I

II. Assume f, g are increasing functions on an interval I, then

Ve, 20 € 1,00 < 9 = f($1> < f(.’L‘Q)
Vo, € I,xy <20 = g(x1) < g(x2)

by definition of increasing functions
III. let h=f+g
IV. W.T.S:

Vl‘l,a?g cl,xy <y = h(l‘l) < h(l‘g)

V. Lemma (1) :

a<bAhNe<d = a+c<b+d

V.a proof of Lemma (1)
Suppose a < b A ¢ < d, by inequality property (e) on review slide 18,

at+tec<b+cANb+c<b+d

by the transitive law,

at+c<b+d

VI. let x1, 22 be arbitrary
VII. suppose

r1 < T2

VIII. then,

h(x1) = f(x1) + g(z1) < f(22) + g(x2) = h(72)
by Lemma (1)

IX.This means that

Vay,x0 € I, 21 < x9 = h(x1) < h(x2) as required

and if f, g are increasing functions on an interval I, then f + ¢ is also increasing on an interval I
X. The sum of increasing function is indeed increasing ]
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1.2 Proof By Contradiction Practice

I. Show that the statement is true:

Ve, ye Ra e QAy¢Q = z+y¢Q

II. Let

ITI. Suppose

IV. Suppose, also, ad absurdum

V. Then, by definition of Q,

VI.

VI. by theorem m,n € Z — mn € Z

VII.by theorem m,n € Z — m+necZ

r,y € R
T€QAy¢Q
r+yeQ
x:&/\aﬂry:q—l

b2 q2

for some p1,p2,q1,q2 € ZAp2,q2 # 0

_ q1P2 — P192
DP24q2

P2q2, q1P2, P1, G2 € Z

@1p2 — P12 €Z

since q1p2 — p1g2 = —p1g2 + @12

VIII. by theorem Va,b € Riab#0 < a#0Ab#0

XI. Thus, we have

XI. This contradicts supposition III.

D2g2 # 0
p
y=-
q

where p = q1p2 —p1g2 € Z and ¢ = paqs #0 € Z

yeQ

by definition of Q : {™*s.t.m,n € Z,n # 0}

we have shown that it is not the case that x + y € Q and so z + y ¢ Q as required.
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Absolute values and inequalities

Def™ 2.1 Let x € R
Then,

Or, let z,y e R

The distance between x Ay is |y — x|

Theorem 2.1.1 Let z,y € R
Then,

|z +y| < |z|+ [yl

this is called triangle inequality.
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2.1 Proof of Triangle Inequality

Proof.
Assume (i) - (v) have been proven in slide 2
Let z,y € R
We consider two cases.
Case 1.
Assume =z +y > 0.
Then,
lz+yl=+(+y)

by definition of ||

< fa| + lyl

z < |z

by (iv.) twice, i.e.,
y < |yl

Case 2.
Assume z + y < 0.
Then,

by definition of ||

=—(z) = (y)
by algebra
<[ —z[+] -yl

< | —

by (iv.) twice, i.e., v<|-al
—y<|-yl

= lz| + ly|

by (iii.) twice, i.e., 4| % = 1]

| =yl =1yl
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Limits

Def” 3.1 If we can make the values of f(x) arbitrarily close to L by taking x to be sufficiently close to ¢ (on
either side of ¢) but not equal to c, then
lim f(x) =L

r—c

- If a limit exists, it is a single number.
00

- If a limit does not exist (D.N.E.), it could be that the limit - ) o
one-sided limits differ

1

sinx

oscillates, e.g.,
More formally:

Def™ 3.2 Let L,c € R and suppose that f is defined on an open interval around c (except possibly at c).
Then,
lim f(x) =1L

r—c

which means AL € R such that
if;
Ve>0,30st. 0<|z—c|<d = |f(x)—L|<e
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3.1 An Example: Prove lim, ,»(3z —8) = —2

LWTS
Ve>0,30 >0st.0<|z—c|<d = |f(z)—L|<e

where, f(z) =3z —8;L = —2;c=2.
Which means,
Ve>0,30>0st.0<|z—-2/<d = |3z —6|<e.

II. Let € be arbitrary such that it is greater than zero.
III. Choose

§=2<
3
note that § > 0 since € > 0.
IV. Assume
0<|xz—c|<é.
V. We have ¢
O<lz—2|<d==
o2l <o=t
by chosen § and given c.
VI.Then,

0<3lz—2|<3i=¢
multiplying inequality V. by 3
= 3llr—2|<35i=¢
by definition of |CJ]
= Bz —2)|<3i=¢
by property |zy| = [x[y|
= |3z -6/ <35=¢

by algebra
VII. Recall that
flz)=3x—8L=-2c=2.

VIII. We have ¢
Ve>0,§|(5>03.t.0<|x—2|<(5:§ = [3z—6| <e¢

as required.
|
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3.2 Uniqueness Theorem

Theorem 3.2.1 Let Ly, La,c € R and suppose f is defined on an open interval around c (except possibly at c).

T—C

T—C

Proof.
I. Assume
lim f(z) = L1 A lim f(x) = Lo.
r—c

Tr—c

II. Suppose, ad absurdum,
Ly # Lo.

III. By definition of limit,

Ver > 0,361 >0st. 0<|z—c| <6 = |f(x)—L1| <&
Vey > 0,362 > 0 s.t. 0 < |J?—C| <0y = |f($) —L2| < €3.
III. Let
Ly — Lo
€= ——.
2

Note that € > 0 since Ly # Ly per assumption II.
IV. Let, also
€1 =¢6=¢>0.

IV. Then there exists

91,02 > 0 such that |f(x) — L1| < e1 A|f(z) — La| < ea.

V. Choose
0= min{él,ég}.

Note that both § < §; A d < d5 hold.
VI. Choose x € R such that 0 < |z — ¢| < 4.
Then we have both
O<|z—cl < ANO<|z—rc|<b

,and thus we have also
|f(x) — L] <ea=eN|f(x) — La] < ea =€.

VII.Now, we sum |f(z) — L1]| < €1 = e A |f(x) — La| < €2 = € and get
|1 = Lo| = [L1 — f(z) + f(z) — La| < |L1 = f(2)[ + [f(x) — La| < 2¢ = [L1 — Lo

by triangle inequality and property |f(z) — L1| = |L1 — f(z)].
VIII. Since VII., |L; — Lao| < |L1 — Lo| is a contradiction we must refute supposition II.
Thus, indeed L, = L.
|
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Practice of limit proof:

Prove lim, ,5(32? — 3z +6) = 4

IL.WTS
Ve>0,30>0st0<|z—2|/<d = [(32° —32+6) — 4| <e.
By definition of limit.
II. Let
€ > 0 be arbitrary
III. Choose p
0 = min{1, = }.
min{ ,2}
Note that d <1AJ§ < 55 also 6 > 0since e A1 >0
IV. Assume
0<]z—2| <4
V. Lemma (1)
|z —1] <2
V.a Proof of Lemma (1).
V.b From |z — 1],
|l — 1| = |z — 2+ 1] by algebra
<l|lz—-2]+1 by triangle inequality
<é+1 since |z — 2| < ¢
<141 since § < 1 by the chosen 4.
=2
O
VI. Thus,
|(32% — 3z +6) — 4| = |(x — 1)(z — 2)| by algebra
= |z — 1|z — 2| by property |zy| = |z|y|
< 2|z -2 by Lemma (1)
<20 by assumption IV.
< 2% by chosen §
=c by algebra

as required. Wl
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Theorem

Let L, M,a,b,c € R, and suppose f and g are defined on an open interval around ¢ (except possibly at c).
If
lim f(z) =L and limg(z) =M,

Tr—cC T—cC
then
alziﬁmcaf(x) +bg(z) =aL + bM.
Proof.
I. Assume
lim f(x) =L and lim g(z) = M.
Tr—cC Tr—cC
II. WTS

Ve>0,30st.0< |z —c|<d = |af(z) +b(fz) — (aL +bM)| < e.
III. By assumption I. and limit definition, we have

Ve > 0,301 st. 0< |z —c| <d = |f(x) —c| <€
Veg > 0,392 s.t. 0 < |z — | < Jy = |g(z) — | < ea.
IV. Let
€ > 0 be arbitrary.

V. Let
€ €

T ([ + 1) T 2B+ 1)

VI. Choose 61,2 > 0 satisfying

0= min{§1,52}.
VII. Assume

0<|z—c|<é.
VIII. As § < 01 A6 < dg it follows that 0 < |z —¢| < 61 A0 < |z — ¢| < b2,
which suffices for the holding of

|f(z) = <er Ag(x) — ] < e,
by assumption I.

XI. Then,
laf(z) + bg(x) — (aL +bM| = |a(f(x) — L) + b(g(x) — M)| by algebra
< la||f(x) — L| + |b||g(x) — M| by triangle inequality and |zy| = |z||y|
< |aler + |ble2 by VIII.
€ €
= b b h S
o+ Mg Y chosen 1, ¢
la| € bl e
- . L Z by algeb
la+1 2" pl+1 2 Y algebra
<1- % +1- % by inequality property a,b,c >0 = ;& < ¢
=c by algebra; as per required.
|

p- 10
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6.1 Squeeze Theorem

Let L,c € R and there’s d > 0 such that functions f, g, h are defined on a punctured interval around c.
Theorem 6.0.1 If

(c—d,c)U(c,c+d)

—c
then,
lim f(z) = L
Proof.
I. Assume
(1) 9(z) < f(z) < h(z),Vo € (c—d,c) U(c,c+d)
(2) lim g(2) = lim A(z) = L
hold.
II. WTS
Ve,3st. 0< |z —¢c| <d = |f(x)—L|<e

by definition of limit.

III. Let

€ > 0 be arbitrary.
IV. By assumption (2) and definition of limit we have
Ve, 301 8. 0< |z —c| <8 = |g(z) — L| < &
Veg, 302 s.t. 0 < |z — | < Ja = |h(x) — L| < ea.

V. Let
€1 = €,€3 = €.
V1. Choose
6= min{51, (52, d}
VII. Assume

0<|z—c|<d.
VIII. It follows that
O<|z—c|<hAO<|z—c|<bN0<|z—c <d
which suffice for
lg(x) — L| < et A|h(z) — L| < e2 Ag(z) < f(z) < h(z).

IX. By our chosen €1, €5, this means

l9(x) — LI < e Alh(z) — L < e A g(z) < f(z) < h(x)
= L—-e<g@)<L+eANL—-—e<h(z)<L+eNg(z)<f(r)<h(z) by definition of | - |
= L—-e<g(z)< f(zr) <h(z)<L+e by algebra
= L—e<f(z)<L+e by algebra
= |f(x) —L| <e¢ by definition of | - |; as required.

p- 11
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7.1 Continuity
Def®: f is continuous at ¢
if
tim f(z) = f(c)
ie.,
(1) f(c) is defined
(2) lim f(x) exists; i.e,, im f(z) = lim
r—c r—c™

(3) tim f(x) = £(0). o

Def™: f is continuous at ¢
if

Ve>030 >0s.t. [z —c|] <d = |f(x) — f(o)] <e.

p- 12
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7.2 Practice of proving continuity

Prove f(z) = 22

Proof.
I. Let

II. WTS

III.Let

IV.Choose § satisfying

V.Assume

VI. We have

VIIL.Then

is continuous on R.

c € R be arbitrary.

Ve>030>0st. |[r—¢| <6 = |2 —c?| <e

1'2—02

]

€ > 0 be arbitrary.

£
(1+2[cf)

}

= min{1,

|z —¢| < 0.

|z + | = |(z — ¢) + 2¢]

<z — |+ 2|c|
<0+ 2|
<1+42|

= [z +¢)(x -0

=|x+cl-|x—¢|

<
<

(1+2|c]) -
(1 +2fe]) -

3

)

&
(1+2|cf)

by definition of continuity.

note that § > 0.

by algebra
by triangle inequality
by assumption V.

by our chosen §.

by algebra
by absolute value property
by assumption VI. and algebra in VII.

by chosen §
by algebra; as required

p- 13
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7.3 Theorems
ig% cosx =1 (1)
Vo € R, |sinz| < |z] (2)
lim 220 — 1 (3)
z—0 X
Proof of (3)
Proof.
I. Apply Squeeze Theorem.
I1. For the lower bound,
IL.a case 1 Vz € [0, 5],
1 t
530(1)2 < a;x by algebra
— z < tanxzx by algebra
== = < e by algebra
cosx
= coszx < e by algebra
IL.b case 2 Vx € [-7,0],
1 5 _ tanzx
51:(1) < ) by algebra
— z <tanz by algebra
= < Sy by algebra
cosw

I1.c Thus,

—> xcosz > sinz

sinx
= cosx < ——
x

Vi € [ ™ 77] < sinx
re€|——,=|,cosx < —
2727 -z

as cosx <0

asx <0

as required.

p- 14



MATA31 Eric Wu 8 LECT7A

8 Lec 7a

8.1 Archimedean Property

Theorem 8.0.1 For every x,y € R with x,y > 0, there exists n € N such that nx > y.
Proof.
e Let x,y € R be arbitrary.
e Assume z,y > 0.
e To derive a contradiction, assume Vn € N,nz < y. (i.e., "assume the opposite”).
e Consider S = {nx | n € N}.
e Then y is an upper bound of S (by definition of upper bound).
e Since S # () and is bounded above, S has a least upper bound (by the LUB Property).
e Let a = sup(9).
e Then o — z is not an upper bound of S since o — & < « (recall z > 0).

e In particular, there must be an element of S (call it nz) bigger than « — x, that is, « — x < nz for
some n € N.

e Thus, a < nzx+x = (n+1)x.

e Since n+ 1 € N, we have that (n+ 1)z € S.

e Thus, « is not an upper bound of S since a < (n+ 1)z and (n+ 1)x € S.
e This is a contradiction since « is the least upper bound.

e Therefore, it must be that 3n € N such that nx > y. ]

p- 15
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8.2 Density of Q in R

Theorem 8.0.2 For every two real numbers a,b with a < b, there exists a rational number r satisfying
a<r<b.

Proof.
e Let a,b € R be arbitrary.
e Assume 0 < a < b.

e By the Archimedean Property (use = b—a > 0 and y = 1 > 0), there exists n € N such that
n(b—a) > 1.

e Choose m to be the smallest integer greater than na.
e That is, find m € N such that m — 1 < na < m.

e Then na < m < nb (since nb — na > 1).

e Thus, na < m < nb implying that a < > < b.

e Choose r = * € Q which has the required property.

e To complete the proof, also consider the cases a = 0 and a < 0. [ |

p- 16
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8.3

Boundedness Theorem

Theorem 8.0.3 If f is continuous on [a,b], then [ is bounded on [a,b].

Proof.

Assume f is continuous on [a, b].
Consider the set S = {x € [a, ] : f is bounded on [a, z]}.
Note that S is non-empty (since a € S) and bounded above by b.

By the completeness property of the real numbers, S has a least upper bound, say ¢ = sup(S). We
claim that ¢ = b.

To derive a contradiction, suppose that ¢ < b.

Note that ¢ > a since f is right-continuous at a (and so there is a d; > 0 such that f is bounded on
[a,a + 01]).

Since f is continuous at ¢, there exists a § > 0 such that f is bounded on [¢c — 6, ¢ + ¢].

Thus, f is bounded on [a,c — d] and on [c — d, ¢ + ¢], implying f is bounded on [a, ¢ + J].

This contradicts the choice of ¢ as the least upper bound of S. Hence, ¢ = b.

This means that f is bounded on [a, z] for all x < b.

By the right-continuity of f at b, there exists a § > 0 such that f is bounded on [b — 4, b].

Thus, f is bounded on [a,b — §] and [b — 4, b], which implies that f is bounded on [a, b]. |

p. 17
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8.4

Extreme Value Theorem

Theorem 8.0.4 If f(x) is continuous on the closed interval [a,b], then f(x) must attain both an absolute
mazimum and an absolute minimum on [a,b].

Proof.

Assume f is continuous on [a, b].

By the Boundedness Theorem, f is bounded on [a,b] (i.e., {f(z) | € [a,b]} is bounded).
Let M =sup({f(z) | z € [a,b]}). (This exists by the Least Upper Bound Property.)
(Want to show: M is the maximum, i.e., there exists a ¢ € [a, b] such that f(c) = M.)
To derive a contradiction, suppose there is no such c.

Then f(x) < M for all z € [a,b].

1

Define a new function g(z) = e IOR

Since M — f(x) > 0 for all z € [a,b], we have g(z) > 0.

Additionally, g(z) is continuous on [a, b] since f(z) is continuous on [a, b].

By the Boundedness Theorem, g is also bounded on [a, b].

Therefore, there exists some K > 0 such that —K < g(x) < K for every z € [a, b].
Consequently, ﬁ < K, which implies that M — f(z) > % for all z € [a, b].

Thus, f(z) < M — & for all z € [a, D).

This, however, contradicts the assumption that M is the least upper bound of f(z) on [a,b].
Therefore, there must exist some ¢ € [a,b] such that f(c) = M.

Hence, f attains its maximum on [a, b].

The proof that f attains its minimum on [a, b] follows similarly. |

p- 18
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9.1 Intermediate Value Theorem:

If f is a continuous function on the closed interval [a, b] and N is any number strictly between f(a) and f(b),
then there exists a number ¢ in (a,d) s.t. f(c) =N

Implication/ Application

1. Every polynomial with an odd degree has at least one real root (i.e., solution)

2. To approximate a solution to f(z) = 0 (assuming one exists):

e Find an interval [a,b] on which the function changes sign.

e Evaluate f at the midpoint ‘ITH’ and choose whichever subinterval f changes sign on.
e Repeat to get smaller and smaller subintervals.

Proof. (WhenN = 0)

I. Assume f is a continuous function on the closed interval [a,b] and f(a) < 0 < f(b).
II.Consider the set S = {v € [a,b] : f is negative on[a,~)}

ITI. Recall the definition of continuity: if f is continuous at c:

Ye>030>0st. |z —c <d = |f(zx)— flo)| <e

Note that, this means if f is right continuous,
then
Ye>030 >0st. x —c<d = |f(x) — f(o)] <e

Also, for left continuity
Ve>030>0st. —d<z—c<= |f(z)— f(o)] <e
IV. Note that f is right continuous at a. We take
e=—f(x)>0

note that € > 0.
Then it follows that there exists a 1 > 0 s.t. if a <z < a+d; then |f(z) — f(a)| < —f(a), that is, f(z) <0
V. By the same idea and assumption f is left continuous at b. We take

e=f(b)>0

then it follows that there is such a d2 such that if b — d2 < x < b then |f(z) — f(b)] < f(b), i.e., f(z) >0
VI. Note the fact that S is bounded above by b by assumption and a + 6 € S.

Thus, S is non-empty

VII. By the completeness property of R S has a least upper bound, say ¢ = sup (.5)

9.2 Yet finished

p- 19
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10.1 Derivatives

10.2 Differentiability

Theorem 8.2.1: If f is differentiable at a, then f is continuous at a.

Counterexample against the converse of the theorem: Consider f(z) = |z| which is a continuous
function on Domain: R however it is not differentiable at = 0. Then f is continuous at = 0 but not

differentiable at x = 0

. fO+h)—f(O) .. J0+h]—fl0] .. |A|
/ = _— = _— —_—
FOP= = M e
When h — 0~. lim w =_1.
’ h—0 h
When h — 0+, lim w -1
’ h—0 h
10.3 Derivative notation
d"f d™y
(n) =, =2J _2J
frie) =y = dz™ — dam’

Also, note that % is called the derivative operator.

Example for n** derivative:
a(diad
dx \dx \dz

Theorem 8.3.1: Let a € R and let f and g be functions defined in an interval around a.
If f A g are differentiable at a, then f + g is differentiable at a, and furthermore,

(f +9)(a) = f'(a) + 4'(a).

. 20
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10.4 Derivative Rules

Theorem 8.4.1: Let ¢ € R. Then %c
Proof.

Let f(z) =c¢

Then for any ¢ € R

0

by derivative definition
by definition of f

by algebra
by cancellation theorem

by limit rules.

p- 21
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n—1

Theorem 8.4.2: If n is a positive integer, then %x" =nx
Proof.
Let f(x) = 2™ be a power function for some positive integer n.
We use the formula:
" — g = (.T _ a)(xn—l +xn—2a+ . +xan—2 4 CLn—l)

Then at any number a € R we have:

v f(@) = f(a)
f(a)—}gnaix_a
_ llm xn_an

r—a T — Qa
(l‘*a)(xnfl +xn72a+”.+xan72+an71)

= lim
r—a r—a

= lim (2" ' + 2" 2a 4 +xa""? +a"Y) by Cancellation Theorem
r—a

= na" ! by limit rule and continuity

p.- 22
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Theorem 8.4.3: Let a € R and suppose f, g are functions defined on an interval around a.
Define h=f-g
If f and g are differentiable at a, then h is differentiable at a, and furthermore

(f9)'(a) =W (a) = f'(a)g(a) + f(a)g'(a).

Proof.
Assume f and g are differentiable at a

i 1) = 1)

exists
i.e., by definition ¢ *7¢ T —4a
lim Mexists
T—ra Tr—a
Then,
h'(a) = lim hiz) = ha) by definition of derivative
T—ra Tr— Qa
= lim f(@)g(@) — f(a)g(a) by definition of h
T—a Tr —Q
o F@)e() — fla)o(e) + f(@g(x)  fa)gla) by algcinn
r—a r—a
— lim M -g(x) + f(a) - M by algebra
z—a r—a r—a
= lim o) = fla) lim g(z) + lim f(a)- lim 9(x) = 9la) by algebra
T—a r—a Tr—ra T—ra T—ra r—Qa

note that lim M

exists since f is differentiable at a;
T—ra Tr—a

lim g(x) exists since g is differentiable at a, hence g continuous at a by theorem (diff = cont);
r—a
hm f(a) exists by constant limit rule;

L 9l@) — g(a)

T—a xr —

f(a)g(a) + f(a)g'(a) as required.

exists since ¢ is differentiable at a.

O
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Theorem 8.4.4:

Proof.

Let f(x) =sinz

Then,

f'(x)

Theorem 8.4.5:

Proof.

Let f(z) = cosx

Then,

f'(z)

(sinz)’ = cosz

o S )~ f(@)

by definition of derivative

h—0 h
sin (x +h) —sinz
= (z+7) by definition of f
h—0 h
sinx cosh + cosx sin h| — sinx
= lim [ + ] by trigonometric identity
h—0 h
sinx cos h — sinx| 4+ cosxsin h
= lim [ I+ by algebra
h—0 h
sinz(cosh — 1 cosxsinh
= lim ¥ + lim —— by limit rules
h—0 h h—0
. . cosh—1 . sinh ..
=sinx lim ———— + cosz lim by limit rules
h—0 h—0
=sinz-0+cosx-1 by property lim,_,g Cosgffl =0 and lim,_,g Sigx =1
=cosz by algebra; as required.
O
(cosz) = —sinz
z+h)— f(z
= lim M by definition of derivative
h—0 h
cos (x 4+ h) — cosx
= lim (z+h) by definition of f
h—0 h
. [cosxzcosh —sinzsinh| — cosx . . )
= lim by trigonometric identity
h—0 h
cosxcosh —cosz| —sinxsinh
= lim [ | s ! by algebra
h—0 h
cosx(cosh — 1 sinzsin h
_ Jim SB8Z(CSR D)y, SinTsink by limit rules
h—0 h h—0 h
. cosh—1 . . sinh ..
=cosx lim ——— —sinz lim by limit rules
h—0 h—0
=cosx-0—sinx-1 by property lim,_,q % =0 and lim,_,q Sig”’ =1
= —sinz by algebra; as required.
a
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Example: There are two tangent lines to the graph of f(x) = 22 — 2z + 1 that are also tangent to

g(z) = —2% — 2z. Determine the slopes of these lines.

Solution: Consider

m= f'(a) = 2a — 2
m=g'(b) = —2b—2
m — {@=g®) _ (a®—2a+1)—(-b?—2b)
a—b a—b
Where ) )
_mr and b = —m=
2
by algebra.
Then, we have
m 2 2 —m—2\2 —m—2
(@ —2a+1) — (-1*—2) _ ((%F%)" 2" + 1) — (- (Z52)" -~ 2=52))
"= a—b - (m;-2) — (_72_2) by algebra
m2 —2
= 50m - 9) by algeb
2(m+2) Yy algebra
m? —2
= 5m 9y by algeb
=0 2(m +2) m y algebra
m? —2—m(2(m+ 2))
- by algeb
2(m+2) v algebra
=m® —2-2m* — 4m by algebra
=m? + 4m + 2 by algebra
—4 £+ 22
== m= % by quadratic formula
=-2+2 by algebra.
Therefore the slopes are —2 4 /2 as required. 0
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Theorem 8.4.6: Let a € R and suppose f, gare functions defined on an interval around a.

Define h = i

g
If f and g are differentiable at a, then h is differentiable at a, and furthermore

Ty — iy P@g(@) = fla)g'(a)
(;)(a) = H(a) = o

Assume f, g, are differentiable at a
o 1)~ f(a)

T—a r — Qa

L ge) ~ gla)

T—a Tr—Qa

exists
i.e., by definition
exists.

Then,

h(z)—h
B (a) = lim hi@) = Ma) by definition of derivative
T—a T —a
o
T g(z g(a
=i T—a
f(z)g(a)—f(a)g(=)
N Cr0)
T—a T —a

by definition of h

by algebra

by algebra

by algebra

by algebra

)=o) —f@) | f@)
T R e T T T

since f, g is differentiable so does lim M
T=sa T —a t—a T —a

exists since ¢ is differentiable hence continuous and g(a) by limit constant rule

=g'(a)- ;{a(;) + f/(a) . gg(a) apply limit rules

as required. Wl
9(a)?
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Practice Problem: Let f(z) = 2'° + 42 + 8
Then

f(w) — (2 (10w® + 4) — (10(2)° + 4)

lim = lim by definition of derivative and f
w—2 w—2 w—2 w—2
10w® — 10(2)°
= lim M by algebra
w—2 w—2
10(w? — (2)°
= lim (11}7()) by algebra
w—2 w—2
1 3\3 __ 2 3\3
= lim 0((w?) (2°)°) by algebra
w—2 w—2
10 3 _ 23 3\2 323 23 2
= lim (w ()" + w2 + (2°)7) by identity x3 — y3 = (x — y) (2% + 2y + v?)
w—2 w— 2
o 10(w — 2)(w? + 2w + 22)(wb + w323 + 26)
- wll)nQ w—2
by identity z3 — % = (x — y) (2% + 2y + v?)
= lim2 10(w? 4 2w + 2%) (w® 4+ w2® + 29) by cancellation theorem
w—r
=10(2% + 22 + 22)(2°% 4 2323 + 2°) by limit rules
=10-3%.2% by limit rules
= 23040 as required 1.
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Term Test II Review

1. Squeeze Theorem: Its proof and variations (e.g., see Problem 5.2 in Practice Problem Set 5).
Let Lyc € RA3d > 0s.t. f,g,h are functions defined on a punctured interval around c. If Vz € (¢ —
d.¢)U(c.c+ d). g(x) < f(2) < h(x) and lim g(x) = lim h(z)

then,
tim f(x) = L
Proof.
Assume Vz € (¢ —d,c) U (¢,c+d),g(x) < f(z) < h(z) and lim g(z) = lim h(z)
r—c Tr—cC
WTS:

Ve>0,30>0st. 0<|z—¢|<d = |f(z)—L|<e

Let € > 0 be arbitrary. By assumption we have both

Ver > 0301 >0st. 0< |z —¢| <d; = |g(z) —L| < e
Veg > 0392 >0s.t. 0 < |xv—¢| <d2 = |h(z) — L| < €2

Let 61 = Neg = ¢

Choose 6 = min{dy, d2,d}

Then it follows that 0 < |z — ¢| < 61,0 < |z —¢| < d2, and 0 < |z — ¢| < d, which suffice for
9(x) — L| < e1, h(x) — L] < €2, 9(x) < f(z) < h(a).

Then,

L-—e<glz)<L+enL—e<h(z)<L+eng(r)<flx)<h(z)

= L-e<g(x)< f(z)<h(r)<L+e

= |f(x)—Ll<e

ie., glcl_)mcf(m) =L [ |
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2. Limits involving trigonometric functions: Proofs and examples such as:

L . . sinz . 1l—cosz
limsinz =0, limcosz=1, lim =1, lim——=
x—0 x—0 rx—0 X x—0 x

lim sinz = 0
z—0
Proof.
WTS: Ve > 0,30 >0s.t. 0< |z]| <d = |sinz| <§
Let € > 0 be arbitrary
Choose § = ¢
We use the inequality |sinz| < |z]
On a unit circle, this is always true as the arch of angel x is greater or equal than the height sin(z) of
the triangle where 6 = x.
Assume 0 < |z| < § = € by our chosen §
Then, |sinz| < |z| < § = € as required. W

lim cosz =1
x—0

Proof.

WTS: Ve > 0,30 >0s.t. 0< |z| <6 = |cosz—1] < ¢

Let € > 0 be arbitrary.

Choose § = 24/¢. Note that § > 0
Assume 0 < |z] < 4.

2 2
Then, |4 < &

Then,
|cosx — 1] =|(1 — sinz(g)) — 1] by double angel identity
9, T z?

= |sin (§)| < |Z| by identity used in previous proof
52

< JE—
4

_ (2ve)?

4
4

= Zg —c as required. W
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lig SR _
z—0 I
Proof.
We prove by squeeze theorem using geometry.
Observe that on unit circleVe € [-F, 7],
T tanx
—.7(1)? <
2w 2
N T < tanx
27 2
— zr < tanzx
— xcosz <sinz
inx
= cosr < ——
x
Also the fact that Vr € R,
[sinz| < |z
— —r <sinzx<x
= sinz <z
sinx
== <1
x

Combining these, we thus have,

Note that

By squeeze theorem,

Proof.

lim
z—0

Vi € [ T 7r] < sinx <
€ |—=,=|,cosx < — <z
27 2 b) — 1: P

limcosz =1lim1=1

z—0 z—0
. sinx
lim =1
z—0 T
as required. W
. 1—cosz
lim ——— =
x—0 x
1—cosx . 1l—cosz 14 cosx
—_— llm .
T z—0 T 1+ cosx
1—cos®zx

= lim ————
-0 (1 + cosx)
2

. sin“ x
= lim ———
=0 (1 4 cosx)
. sinx sinx
= lim .
=0 x (14 cosx)
. sinz . sinx
= lim - lim
z—=0 x 2—01+4coszx
0 .
=1- 5= 0 as required. W
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3. Continuity: Both the definition using limits and the e-J definition, and how to apply these to prob-
lems.
Recall the definition:
A function is said to be continuous at a point c if

Ve > 0,30 st. [x—c] <d = |f(x) — f(c)] <e=lim f(x) = f(c)

Tr—cC

For left right continuity:
We say a function f defined on an open interval I := (a,b) is continuous,if it is continuous Ve € (a, b)
and right continuous at a and left continuous at b, i.e.,

Ve>0,30st. c—a<d = |f(z)— fla)|<e= lim+ f(x) = f(c)

T—ra

Ve>0,30st. —d<axz—-b = |f(z)—f)] <e= lim f(z)=f(b)

r—b~

4. The Continuity Theorem: Partial proofs, including proving that the basic trigonometric function
sin z is continuous and that the sum of continuous functions is continuous.

The Continuity Theorem

If f is a function constructed using any finite combination of the following operations:

e sum, difference, product, quotient, and
e composition of functions,
where the component functions are
e polynomial and rational functions
e root functions,
e absolute value functions,
e exponential and logarithmic functions,

e trigonometric and inverse trigonometric functions,

then f is continuous on its domain.
\. v

Proof (Outline). We leave this as an exercise. Note that it is enough to show the following.

Prove the sum, product, quotient and composition of continuous functions is continuous.

Then prove some basic functions are continuous, for example:

(i) f(x) =c, where c e R (iv) f(x)=Inx (vii) f(x) = +/x
(i) f(x)=x (v) f(x)=sinx (viii) f(x) = |x|

(iii) f(x) = e* (vi) f(x) =cosx (ix) f(x) = aresinx
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5. The Cancellation Theorem.

6. Limit computations.

7. Definitions of max, min, sup, inf, upper/lower bounds, and boundedness above/below, as
well as the Least Upper Bound Property.
Let S CR and M, m,b,¢,s,a € R. Then:

a) M is the maximum of Sif M € Sand x < M for all z € S.

)

b)

¢) bis an upper bound of S if x <b for all x € S.
)
)

(
(b) m is the minimum of S if m € S and x > m for all z € S.
(
(d

(e) s is the supremum of S (denoted s = sup(95)) if:

{ is a lower bound of S if x > ¢ for all x € S.

i. s is an upper bound of S, and
ii. if b is an upper bound of S, then s < b.

(f) a is the infimum of S (denoted a = inf(9)) if:

i. a is a lower bound of S, and
ii. if £ is a lower bound of S, then a > /.

(g) S is bounded above if it has at least one upper bound.
(h) S is bounded below if it has at least one lower bound.
(i) S is bounded if it is both bounded above and bounded below.
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8.

10.

The Approximation Theorem for sup and its proof:
s =sup(S) < Ve >0, 3z € S such that s — e < z.

We prove both directions, first, s = sup(S) = Ve > 0, dx € S such that s — e < x.
Assume s = sup(9).

Let € > 0 be arbitrary.

Assume to the contrary Vo € S;s —e > x.

Then s — € is not an upper bound since s is the least upper bound.
Thus dz € S s.t. s — & < x this contradicts our assumption.

Then we prove s = sup(S) <= Ve >0, 3z € S such that s — ¢ < z.
Assume Ve > 0, dx € S such that s —e < z

Assume to the contrary s # sup(S)

Then there is an upper bound b < s since s is not an the supremum.
Lete=s—-0>0

Then 3z € Sst. s — (s —b) <z je,Ir € Sst. b<u.

Thus b is not an upper bound contradicting our assumption.

We have proven both directions as required. B

Archimedean Property and its proof: Includes density of rational numbers and proof, as well as
computing the infimum and supremum of sets.

Proof.

WTS Ve, y e Ryz,y >0 = In & Nst. ne >y

Let x,y be arbitrary.

Suppose z,y > 0.

Suppose to the contrary Vn,nz <y

Consider a set S = {nz :n € N}

Then, y is an upper bound by definition. And S is not an empty set.

By completeness property, there is an supremum of S, say, a« = sup(S5).

Then, a — x is not a upper bound as a < any upper bound.

In particular, by approximation theorem, take s = a and e =z, In € S s.t. a —x < nx

Thus for some n, @ = nx + = + (n + 1)z. Since n € N, (n + 1)z € S.This contradicts our assumption
that a is a supremum.

Therefore it must be the case that In € N s.t. nx > y as required. B

The Boundedness Theorem and its proof (omit the Extreme Value Theorem).

Proof.

We want to show that if f is continuous on [a,b], then f is bounded on [a,b]. Formally, Vz €
[a,b],3M s.t. |f(x)| <M

Assume f is continuous on [a, b]

Consider a set S = {x € [a,b] : f is bounded on [a, z]}

Then, S # () and is bounded above by b.

By Completeness Property of Reals, there is a least upper bound, say ¢ = sup(.5)

Note that this means any upper bound, including b > ¢. We claim that ¢ = b

Suppose b > c.

Then by right continuity at a there is a § s.t. f is bounded on [a,a + §].

Also since f is cont at ¢ as ¢ < b, there exists a § s.t. f is bounded on [¢ — d, ¢ + §]

Which means f is bounded on [a, ¢ + d]. This contradicts our assumption that ¢ = sup(S).

Thus we have f is bounded on [a,x]V,a < b. Since f is left continuous at ¢, there is a d s.t. [ is
bounded on [b — §,b]. Combining these we have f is bounded on [a,b]. B
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11.

12.
13.
14.

15.
16.

Intermediate Value Theorem: Its proof and how to apply it to problems.

Proof.

We prove if f is continuous on [a,b] and f(a) < 0 < f(b) then Jc € (a,b) s.t. f(c) = 0.

Assume f is continuous on [a,b] and f(a) < 0 < f(b).

Consider a set {7y € [a,b] : f is negative on [a,7)}

Since f is right continuous at a we know there is a ¢ such that f(z) < 0 is bounded on (a,a + ¢) Thus
a+d€S = S #0. Also note that S is bounded above by b.

By Completeness Property there is a supremum of S we call it ¢ = sup(.9).

Claim 1: ¢ # a as f(z) < OVx € (a,d + a);¢ > a.

Claim 2: ¢ #b. as f(x) > 0,Vx € (b—6,b);¢ < b

Thus ¢ € (a,b). Next we show that f(c) = 0.

Suppose f(c) > 0, then the positive interval would extend to the left of ¢ as we can always find a value
in between f(c) A0 by density of R. Which is impossible as anything less than ¢ should be in S.
Suppose f(c) < 0, then there is some t s.t. ¢ < t € [a,t) contradicting our assumption that ¢ is the
supreme.

Therefore it must be the case that f(c¢) = 0 as required. W

Definition of the derivative, tangent line, and differentiability.
Proof that ”differentiability implies continuity”.

Derivative rules and their proofs: Constant multiple rule, sum/difference rules, product/quotient
rules, and rules for trigonometric functions.

The Chain Rule (omit the proof).

Derivative computations using derivative rules.
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Final Exam Theorems and Review

1.Extreme Value Theorem

If f is continuous on [a, b], then f obtain both absolute max and min on [a, b].
Proof.

Assume f(z) is continuous on [a, b].

Then, by Boundness Theorem f is bounded i.e., V& € [a,b]IM s.t. |f(z)]| < M
(since f is continuous on [a, b])

Thus, {f(z)|z € [a,b]} is bounded.

Let M = sup{f(z)|x € [a,b]}. (such sup exists by LUB property)

We claim that M is the max; i.e., 3¢ € [a,b] s.t. f(c) = M.

To derive a contradiction, suppose there isn’t such c.

Then, by definition of supremum, f(z) < M,Vz € [a,b].

Now, we define a function g(z) = Mff(m) note that such function is continuous since f is continuous and its

sum with a constant is continuous.

Also, note that per our contrary assumption, f(z) < M = 0< f(z) - M = g(z) > 0.

Sine g is continuous on [a, b],g is also bounded on [a, b] by Boundness Theorem.

Thus, there exists some K such that |g(z)]| < K = —K <g(x) < K.

By definition of g this means m < K which implies that M — f(z) > K.

Furthermore, f(z) < M — K. Recall the definition of supremum that for any supremum s, Ve > 0,3z €
S st. s —e < x. Take K as the epsilon, note that K > 0. Then this violates our definition that M is a
supremum.

Therefore, it must be that M is a max. The proof of the attainment of a min follows similarly. .

0.1. Local and Absolute Extrema

1. f obtains local max at ¢ if for a open interval I containing ¢, Va € I, f(z) < f(c)
2. f obtains local min at ¢ if for a open interval I containing ¢, Vz € I, f(x) > f(c)
3. f obtains absolute max at ¢ if, Vo € D, f(z) < f(c)

4. f obtains absolute min at c if, Vo € D, f(x) > f(c)

0.1.1. Corollary
If f obtains global extrema at = ¢ on (a,b), then f obtains local extrema at = = c.
We will be using this fact to prove Roll’s Theorem.
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1.1. Fermat’s Theorem

If f has a local extrema at ¢ and f is differentiable at ¢, then Jc s.t. f'(¢) = 0.
Proof.

Assume f has a local extrema at ¢ and f is differentiable at ¢. We prove by cases.
Note that f thus either has a local max or min at c.

First, suppose f obtains a local max at c.

Then, by definition, for an open interval I containing ¢, Va € I, f(x) < f(c).

Let « € I be arbitrary.

We know also, f'(c) exists since f is differentiable at c, i.e., lim,_,.
It then follows that lim, .+ 7f(:”£:c(c) Alimg_, .- 710(2:{(1:) exist. Note that as ¢ — ¢, 2 —¢c > 0A 2 —
¢,z — ¢ < 0. Also, observe that f(z) < f(¢) = f(z)— f(¢) <0.

We thus have lim,,_, .+ W <O0Alim,_, .- w >0

By Squeeze theorem, we have lim,_, .+ 7]0(’2:5(@ <0< limy_, .- 7f(“2:£(c)

and lim,_,.+ w = lim, . % =lim,_, .- w, which means f’(¢) = 0 as per required.
For another case where f has a local min at ¢ the proof follows similarly.

f@)—f(c)

r—

exists.

1.1.1. Roll’s Theorem

(1)f continuous on [a, b]
If ¢ (2)f differentiable on (a,b)  then, 3¢ € (a,b) s.t. f'(c) =0
(3)f(a) = f(b)
Proof. Assume (1,2, 3) hold.
Suppose there is some constant k such that f(a) = f(b) = k. We consider three cases.
Case 1: suppose Vz, f(x) = k, i.e., f(x) is constant function.
Then it follows that Vz, f'(z) = 0.
Thus, 3¢ € (a,b) s.t. f'(c) =0.
Case 2: Suppose 3z € (a,b) s.t. f(x) > k.
By Extreme Value Theorem, there is a global max, say at © = ¢ € [a, b] since f(z) is continuous on [a, b].
Thus by definition, Vz € [a,b], f(x) < f(c).
Note that it follows for some = k < f(z) < f(c) i.e., f(¢) > k. Thus, ¢ # a,b. In particular, ¢ € (a,b)
Now for a subset open interval of (a,b) containing ¢, say I, Va € I, f(z) < f(¢), i.e., ¢ is a local max and
differentiable (by assumption (2)).
(Recall Coroallary 0.1.1. that global extrema obtained other than end points implies that it is also a local
extrema.)
This suffices for Fermats theorem that f'(c) = 0.
Le., 3c € (a,b) s.t. f/(c) = 0 as required.
For Case 3, it follows similarly from Case 2 when we suppose 3z € (a,b) s.t. f(z) < k and then apply
Extreme value theorem for an existence of a global min ¢ that does not equal to anorb. Which is thus also
a differentiable local extrema, by Fermat’s Theorem, such ¢ guarantees f’(c) = 0. As required. W
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1.1.1.1 Mean Value Theorem

If f is continuous on [a, b] and differentiable on (a,b), then 3¢ € (a

¢) = f(b —fla)
= g, >+ /(a).

b—a

=
~
(I‘
rP
\
/—\

0.2 Lemma: The secant line of f(z) connecting a, b is
This is derived from definition of a secant line:

_ Y—y

r — I
= m(z—x1) =y —
= y=m(z—z1) +u1

b) —
M(m —a)+ f(a) in this case m = f(b) gy —any = f(a); thus as required. O

:}y: b_a —

Now, lets proceed to prove MVT.

Proof.

Assume f is continuous on [a, b] and differentiable on (a,b).

We define g(x) = f(z) — the secant line of a,b :: the “distance” between f and such secant line.
That is,

o) = ) - [ TO= L0 0oy 4 f1w)].

Note that g is continuous on [a, b] by continuity theorem as it is the difference between some continuous
function f and polynomial; also, ¢ diff on (a,b) as polynomial diff on R,thus , (a,b), and g is the difference
of a diff function and polynomial.

By definition,

ot0) = @)~ [FOLD a0y 1 0)| = )~ i) =0 Q)
g(b) = f(b) - {W(b —a)+ f(a)} =f(b)— f(b) =0 (2)
= g(a) =g(b) =0 by (1,2)

Then, we have g is continuous on [a, b], diff on (a,b), and g(a) = g(b), which suffice for Roll’s Theorem that
Je € (a,b) s.t. g'(c) =0

We first observe that, ¢'(z) = f(x) — f(b)_g(a)
Thus, c satisfies

g0 = 1o - D=0 g
That is, Jc € (a,b) s.t. f'(c) = w as required. W
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2.1. Inverse function Theorem

If f A f~! are differentiable inverse function, for appropriate value of z we have,

Proof.
By Cancellation Rules, we have

f(f'(z)) = z,Yz € Range
d

d _
— fU @) = o

= f(f@) - (fT)e=1
1
FF= =)

— (Y=

as required W
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2.2 Derivatives of inverse Trignometry

2.2.1 arcsine:

— arcsinx =
dx

Let sinx be restricted to x € (=7, §)

Proof.

2.2.2 arccos:

T

T

Let cosx be restricted to x € (0, )

Proof.

2.2.3 arctan:

1
— arccos T =
dzx

d t
— arctanz =
dx

Let tanz be restricted to z € (=%, %)

Proof.

— arctanzx =
dx

— arcsinx =
d

— arccosr = —
d

1

1
Vv1—22

1
(sin’(arcsin z))
1
cos(arcsin x)
1
=

1
V1—22

(cos'(z))

1

— sin(arccos )

v1—22

1422

1

(tan’(arctan z))

1

sec?(arctan z)

1

1 + tan?(arctan z)
1

1+ (tan(arctan z))?
1

1+ 22

by triangle method; (1

by triangle method; [J

by triangle method; [J
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2.2.4 arcsec: ]
—arcsecx = —— V|| > 1
x |z|va? —1 2

Let secx be restricted to x € (0,

— arcsecx
dz

arcsec has domain (—oo,1) U (1,) Proof.

1
(sec’(arcsecx))
1

sec(arcsec x) tan(arcsec )

1
x tan(arcsec z)
_ 1
Va2 —1
||
_ 1
|z|va? —1

by triangle method; [J

p- 40



MATA31 Eric Wu 10 LEC 8B

2.3 Derivatives of exponential

2.3.1 e*:

Proof.

. h_
limy, o &— 5 L—1
=e as required; [J

2.3.2 ¢” for some ¢ € R:

Proof.

icx — ieln(cw) — iez In(c)

dz dx dx
= ). (2 In(c) + z1n(c)")
=c" - 1In(c) as required; W

2.3.4 Inx:

Proof.
Let y=Inx = eV =1z

as required; [J

I
|
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2.3.5 log,x for some c e Rs.t. ¢ >0Ac# 1:

1 = =
dz e ® (Inc)z  (Inc)x
Proof.
Let y=log.z = c¢Y ==.
d d
it /R
dxc dxx
— v n(e) =
dx
d 1
= ﬁ = In(c) as required. [

p. 42
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2.4.

Hyperbolic function

2.4.0 Definitions

o.

. cosh?z —sinh?x =1

e4e

coshx = 5

; this is even

. I_ -z . .
sinhz = “=7—; this is odd

sinhz _ e®—e””

coshz =~ e®4e— @

tanhx =

e® = coshx + sinh x

Hyperbolic Identities

LAl o A

1. cosh?x —sinh?x =1

sinh(—x) = —sinhx

cosh(—x) = cosh x

cosh(x + y) = cosh x cosh y + sinh x sinh y
sinh(x + y) = sinh x cosh y + cosh x sinh y

p- 43
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2.4.1 Inverses
2.4.1.1 arccoshz = In(z + V22 — 1)
Proof.

we solve for z =

eY+e Y
5 -

eV +eY
r=——
2
= 2x=¢Y +e Y
— 2ze¥ =¥ +1
— e —2zeY+1=0
2 ++4x? — 4
— ey:f
20 +2va? — 1
=>ey:—x 2x =z+vz2 -1
= y=In(z+ Vaz2-1) since the domain of In > 0

2.4.1.2 arcsinhz = In(z + V22 + 1)
Proof.

Y_ oY
we solve for z = &=£

2

ey — 67?/
=
2
= 2x=¢€Y—¢e""Y
— 2ze¥ =% —1
— e —2ze¥—1=0
g 2z EVdx? +4
T T
2z + 22?2 + 1
A L 2x+ =zx+vr2+1
= y=In(z+Vz2+1) since the domain of In > 0
2.4.1.3 arctanhz = § In(}%)
Proof.
Y_e7 Y
we solve for x = G7=.
v — eV
T ey + e Y

= (eY+e x=eY—eY
— zeY+re YV +e ¥V —-eV=0
= re?+r+1-e=0
— (z—1e* +2+1=0

1
= e = R

1—=x
=

—lln 1tz
Y=o\ 1=2

p. 44
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2.4.2 Derivatives

2.4.2.1 di coshz = sinh
T

Eric Wu 10 LEC 8B

2.4.2.2 L sinhz = coshx
2.4.2.3 % tanh z = sech?
2.4.2.4 % arccoshx = xLl
2.4.2.5 L arcsinhz = 1im2
2.4.2.6 % arctanhx = \/11_7

3. Linearization, Optimization, Graph Sketching, L’Ho6pital’s rule

3.1 Linearization

We use the tangent line to approximate values of a function. The approximation at a point x using a nearby
value a is:

fz) = L(z) = f'(a)(z — a) + f(a)

3.2 Optimization

The objective is to find some absolute extrema.

In doing so, the optimization involves constraint.

From the constraint function we can express one variable in terms of another; we then substitute this variable
back to our objective function.

Now, we state the domain of objective function. Thereafter we identify critical points, and then apply second
derivative test.

(Note that Only One Critical Point in Town can be applied.) We otherwise test the end point and critical
point onto the objective function and compare the outputs.

3.3 Graph Sketching

One prominent difficulty arises when we try to find the slant asymptote. To do so, see when z — +o0o what
the function becomes. For example f(x) =z + Va2 + 1~ 2z

3.4 L’Hopital’s rule

Indeterminate form Conditions Transformation to 0/0 Transformation to co /oo

; 2nd®) =4 fmpne) =9 N o g: e i/f‘t;

& EEFY PRa =0y | g ﬁii = ifitg -

0-00 lim f(z) =0, limg(z) =co |lim f(z)g(z) = lim 1;;2) lim f(x)g(x) = lim %

00 — 00 lim f(z) = co, limg(z) = o0 | lim(f(z) — g(z)) = 91}}% lim(f(z) — g(2)) = Inlim Z:zj

o lm f(2) = 0" Bma(e) =0 | tim f(2)*® ~ explim 2150 BRI = v iy 11/;‘8

1% lim f(z) =1, limg(z) =00 | lim f(z)® — explim (2) lim f(z)*® = explim 9(z)
T i 3 = 1/g(x) B z—+¢ 1/1In f(z)

oo’ lim f(z) = oo, limg(z) =0 lim f(z)"™ = exp lim % lim £(z)" = exp lim 11"/; éf;
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