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0 Trigonometry Review
Theorem 0.0.0.1 (Sum Formula).

sin(α + β) = sin(α) cos(β) + cos(α) sin(β) (1)
cos(α + β) = cos(α) cos(β)− sin(α) sin(β) (2)

tan(α + β) =
sin(α) cos(β) + cos(α) sin(β)

cos(α) cos(β)− sin(α) sin(β)
by (1) and (2)

=

sin(α)
cos(α)

+ sin(β)
cos(β)

1− sin(α) sin(β)
cos(α) cos(β)

divide num and dem by cos(α) cos(β)

=
tan(α) + tan(β)

1− tan(α) tan(β)

Corollary 0.0.0.1.1 (double angle formula). Let α, β = θ. Then,

sin(2θ) = sin(θ) cos(θ) + sin(θ) cos(θ) by (1)
= 2 sin(θ) cos(θ)

cos(2θ) = cos(θ) cos(θ)− sin(θ) sin(θ) by (2)
= cos2(θ)− sin2(θ)

= 2 cos2(θ)− 1 we call this *
= 1− 2 sin2(θ) we call this **

tan(2θ) =
2 tan(θ)

1− tan2(θ)

Corollary 0.0.0.1.2. Thus, it also follows that,

sin2(θ) =
1− cos(2θ)

2
by **

cos2(θ) =
1 + 2 cos(2θ)

2
by *

tan2(θ) = sec2(θ)− 1 from sin2 +cos2 = 1

p. 2



MATA37 Eric Wu Winter 2025
Thus,

sin(
θ

2
) = ±

√
1− cos(θ)

2

= 2 sin(
θ

2
) cos(

θ

2
)

cos(
θ

2
) = ±

√
1 + cos(θ)

2

= cos2(
θ

2
)− sin2(

θ

2
).
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1 Definite Integral
1.1 Sums
Definition 1.1.1 (Sigma Notation). Let m,n, k ∈ Z≥0 s.t. m ≤ k ≤ n. If ak is a real-valued
function of k, then

am + am+1 + · · ·+ an−1 + an

=
n∑

k=m

ak,

where ak is the general term, k is the index, m is the initial value of index, and n is final
value of index.

Example. Express 1 − 1
22

+ 1
32

− 1
42

+ · · · − 1
6662

in
∑

− notation. We first observe
that the akhas the for 1

k2
. Now, to osccilates the sign ±, we define ak = (−1)k+1

k2
. Note that

1 ≤ k ≤ 666 in this series. We thus obtain:

1− 1

22
+

1

32
− 1

42
+ · · · − 1

6662
=

666∑
k=1

(−1)k+1

k2
.

Remarks 1.1.1.0.1.
∑

notation is not unique. Take for example the equivalence:

n∑
k=1

ak =
n−1∑
k=0

ak+1.

Theorem 1.1.1.1 (Properties of Sigma Notation). Let n, k, l ∈ Z+ s.t. k ≤ n. If ak and bk
are real-valued functions of k, then

i.
n∑

k=1

(ak + bk) =
n∑

k=1

ak +
n∑

k=1

bk.

ii. ∀c ∈ R,
n∑

k=1

cak = c
n∑

k=1

ak.

iii.
n∑

k=1

ak =
l−1∑
k=1

ak +
n∑

k=l

ak, where 1 < l ≤ n.

Properties (i and ii) are called linearity property of sigma notation.
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Proof. It is sufficient to verify both (i. and ii.) by proving the following: If ak and bk are

real-valued functions of k, then ∀c ∈ R,
n∑

k=1

(cak + bk) = c
n∑

k=1

ak +
n∑

k=1

bk.

Suppose ak, bk ∈ R. Let c ∈ R be arbitrary. Then,
n∑

k=1

(cak + bk) = (ca1 + b1) + (ca2 + b2) + · · ·+ (can + bn) by Σ definition

= (ca1 + . . . can) + (b1 + · · ·+ bn)
by associativity and commutativity of reals under addition

= c(a1 + . . . an) + (b1 + · · ·+ bn) left distributivity law

= c
n∑

k=1

ak +
n∑

k=1

bk by Σ definition; as required.

Furthermore, for (iii.), let 1 < l ≤ n. Then,
n∑

k=1

ak = a1 + · · ·+ an by Σ definition

= a1 + · · ·+ al−1 + al + al+1 + · · ·+ an
since 1 < l =⇒ 0 < l − 1 =⇒ l − 1 ∈ Z+ the equality holds

= (a1 + · · ·+ al−1) + (al + al+1 + · · ·+ an) by associativity

=
l−1∑
k=1

ak +
n∑

k=l

ak by Σ definition; as required

p. 5
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Example. Evaluate lim
n→∞

n∑
k=1

5

n4
(k3 + 1).

Solution. We first observe that 5
n4 is constant with respect to k. Then,

lim
n→∞

n∑
k=1

5

n4
(k3 + 1) = lim

n→∞

5

n4

n∑
k=1

(k3 + 1) by Σ property (ii.)

= lim
n→∞

5

n4

(
n∑

k=1

k3 +
n∑

k=1

1

)
by Σ property (i.)

= lim
n→∞

5

n4

(
n2(n+ 1)2

4
+ n

)
by proven formula in A67

= lim
n→∞

5

4
· (n+ 1)2

n2
+

5

n3
by algebra

= lim
n→∞

5

4
·
(
n+ 1

n

)2

+
5

n3
by algebra

= lim
n→∞

5

4
·
(
1 +

1

n

)2

+
5

n3
by algebra

=
5

4
· (1 + 0)2 + 0 =

5

4
by algebra and limit type c

∞ for some constant c ∈ R; as required.

■
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1.2 Riemann Sums
Definition 1.2.1 (Partition). Let a, b ∈ R, a < b. A partition P of [a, b] is a collection
of a finite number of points in [a, b], one of which is ‘a′ and another one is ‘b′. We write
P = {x0, x1, x2, . . . , xn} for some n ∈ N s.t. a = x0 < x1 < · · · < xn = b.

Example. Let I = [0, 1]. Then P = {1
2
, 0, 1

5
, 1} is a partition; where x1 = 0, x1 =

1
2
, x2 =

1
5
, x3 = 1.

Definition 1.2.2 (Riemann Partition). Let a, b ∈ R, a < b. Consider I = [a, b]. Then, a
Riemann partition of I is a partition such that xi = a+ i∆x; where ∆x = b−a

n
, i = 0, 1, . . . , n

for some n ∈ N.

Example. Find the exact signed area A between y = f(x) = ex over [0, 3]. Say we have
n = 3 for a Riemann partition.

In this case, A ≈ f(x0)∆x+ f(x1)∆x+ f(x2)∆x =
3∑

i=1

f(xi−1)∆x

Definition 1.2.3 (Riemann Sum). Let a, b ∈ R, a < b. Let [a, b] ⊆ dom (f). Let P = {xi}ni=0

be a Riemann partition of [a, b]. Then, a Riemann Sum for f on [a, b] =
n∑

i=1

f(x∗
i )∆x, for

any x∗
i ∈ [xi−1, xi] (sample points). In particular,

Left Riemann sum for f on [a, b] :=

Ln =
n∑

i=1

f(xi−1)∆x.

Right Riemann sum for f on [a, b] :=

Rn =
n∑

i=1

f(xi)∆x.

p. 7
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Conjecture.

1. (a) If f is increasing on [a, b], then Ln ≤ A ≤ Rn.

(b) If f is decreasing on [a, b], then Rn ≤ A ≤ Ln.

2. Larger n values provide more accurate approximations of A.

Intuition. Let y = f(x) = ex. Note that f(x) is an increasing function on R. Say n = 5.
Then on the interval [X0, X4] we have:

20

40

60

X0 X1 X2 X3 X4

f(X0) f(X1)
f(X2)

f(X3)

f(X4)

Left Sum
Right Sum

x

y

Left and Right Riemann Sum for ex (n = 5)

Where ∆x = X0+X4

5
= all the base of rectangles. Observe that Ln ≤ A ≤ Rn since left

Riemann Sum takes f(X0), ..., f(X3) and right Riemann Sum takes f(X1), ..., f(X4) by our
definition;where f(x0) < f(X1) and f(X3) < f(X4).
The signed area of this increasing function thus has the property satisfying conjecture 1., (a).

Consider n → ∞ on the interval [X0, Xn]of f.

20

40

60

X0
. . .

Xn

f(X0)

f(Xn)

Left Sum

Right Sum

x

y

Riemann Sum for ex as n → ∞

In this case, it seems that conjecture 2. holds.
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1.3 Definite Integral
Definition 1.3.1 (Riemann Definite Integral). Let a, b ∈ R, a < b. Let A be signed area
between f over [a, b]. Let a finite set P = {xi}ni=0 be a Riemann partition of [a, b].
Let [a, b] ⊆ dom f. Then, the definite integral of f on [a, b] is denoted as:

A =

∫ b

a

f(x)dx = lim
n→∞

n∑
i=1

f(x∗
i )∆x

for any x∗
i ∈ [xi−1, xi]; provided that the limit exists.

Definition 1.3.2 (Integrability). When such limit exists we say f is integrable on [a, b].

Notation.

1. “

∫
′′ is called integration sign.

2. a and b are integration limits, where a is the lower integration limit and b is the upper
integration limit.

3. f(x) is the integrand.

4. dx is called the differential. (Intuitively the infinitesimally small width for Riemann
Sum).

p. 9
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Example. Evaluate
∫ 1

0

√
1− x2dx.

Solution. First, note that we have a smei-circle function:

f(x) = y =
√
1− x2

=⇒ y2 = 1− x2

=⇒ x2 + y2 = 1 observe that this is a circle center at (0, 0) with radius 1.

Since dom f = [1,−1] =⇒ f(x) ∈ [0, 1] this is a semi-circle with radius 1. Geometrically,

we thus have
∫ 1

0

√
1− x2dx =

π(1)2

4
=

π

4
, as required. ■

Graphically,

X0 Xn

f(X0)

f(Xn)

x

y

Definite Integral
∫ 1

0

√
1− x2dx
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Example.(Ans: −21

2
). Compute

∫ 3

0

(x − 5)dx using Riemann definition of the definite
integral. Given that [a, b] = [0, 3], f(x) = x− 5.

Solution. We know ∆x = 3−0
n

= 3
n
. Thus, by definition, xi = 0 + i 3

n
= 3i

n
. Choose x∗

i = xi.
Then,

f(xi) = xi − 5 =
3i

n
− 5.

Therefore,∫ 3

0

(x− 5)dx = lim
n→∞

n∑
i=1

f(xi)∆x by R definition of definite integral with x∗
i = xi

= lim
n→∞

n∑
i=1

(
3i

n
− 5

)
3

n
since xi =

3i
n
and ∆x = 3

n

= lim
n→∞

n∑
i=1

(
9i

n2
− 15

n

)

= lim
n→∞

(
n∑

i=1

9i

n2
−

n∑
i=1

15

n

)
property of Σ

= lim
n→∞

(
1

n2

n∑
i=1

9i− 1

n

n∑
i=1

15

)

= lim
n→∞

(
1

n2
(
9n(n+ 1)

2
)− 1

n
(15n)

)
= lim

n→∞

(
9n2 + 9

2n2
− 15

)
= −21

2
as required.

■
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Example.(Ans:
∫ 11

6

x

x− 2
dx). Express lim

n→∞

5

n

n∑
i=1

6 + 5i
n√

4 + 5i
n

as a definite integral.

Solution. We first note that

lim
n→∞

5

n

n∑
i=1

6 + 5i
n√

4 + 5i
n

= lim
n→∞

n∑
i=1

6 + 5i
n√

4 + 5i
n

· 5
n

by properties of Σ.
Observe that 5

n
seems to form a pattern. We thus choose ∆x = 5

n
. Also, we choose x∗

i = xi,
i.e., to form a right Riemann sum. Then, by definition, ∆x = 5

n
= b−a

n
and xi = a + i∆xi.

In particular, we can choose xi = 6 + i∆xi. It then follows that a = 6 ⇐⇒ b = 11. Then,
we have

lim
n→∞

5

n

n∑
i=1

6 + 5i
n√

4 + 5i
n

= lim
n→∞

n∑
i=1

6 + 5i
n√

4 + 5i
n

· 5
n

= lim
n→∞

n∑
i=1

xi√
xi − 2

·∆x by chosen xi and ∆x

Note that f(x∗
i ) =

xi√
xi−2

. We thus choose f(x) = x√
x−2

. Then,

lim
n→∞

5

n

n∑
i=1

6 + 5i
n√

4 + 5i
n

= lim
n→∞

n∑
i=1

xi√
xi − 2

·∆x as shown previously

= lim
n→∞

n∑
i=1

f(x∗
i )∆x

since x∗
i = xi as chosen, also by definition of chosen f

=

∫ 11

6

f(x)dx R definition of definite integral

=

∫ 11

6

x√
x− 2

dx as required.

■
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Theorem 1.3.2.1 (Properties of the Definite Integral). Let a, b ∈ R, a < b.
Let [a, b] ⊆ dom f. If f and g are integrable on [a, b], then

i. (a) If f(x) ≥ 0 on [a, b], then
∫ b

a

f(x)dx ≥ 0.

(b) If f(x) ≤ 0 on [a, b], then
∫ b

a

f(x)dx ≤ 0.

ii. f + g is integrable on [a, b]. Moreover,∫ b

a

(f(x) + g(x)) dx =

∫ b

a

f(x)dx+

∫ b

a

g(x)dx.

iii. ∀c ∈ R, cf is integrable on [a, b]. Furthermore,∫ b

a

cf(x)dx = c

∫ b

a

f(x)dx.

iv.
∫ a

a

f(x)dx = 0.

v.
∫ b

a

f(x)dx = −
∫ a

b

f(x)dx

vi. Union Interval Property:∫ b

a

f(x)dx =

∫ c

a

f(x)dx+

∫ b

c

f(x)dx

for any constant c ∈ (a, b).

p. 13
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Proof (of ii.). Suppose f and g are integrable on [a, b]. It is sufficient to show that∫ b

a

(f(x) + g(x)) dx =

∫ b

a

f(x)dx +

∫ b

a

g(x)dx. For the existence of
∫ b

a

(f(x) + g(x)) dx

satisfies integrability of f + g on [a, b].
∗ Let P = {xi}ni=0 be a Riemann partition of [a, b]. Note that by assumption,

(1)

∫ b

a

f(x)dx = lim
n→∞

n∑
i=1

f(x∗
i )∆x exists for any x∗

i ∈ [xi−1, xi]

(2)

∫ b

a

g(x)dx = lim
n→∞

n∑
i=1

g(x∗
i )∆x exists for any x∗

i ∈ [xi−1, xi].

Consider∫ b

a

f(x)dx+

∫ b

a

g(x)dx = lim
n→∞

n∑
i=1

f(x∗
i )∆x+ lim

n→∞

n∑
i=1

g(x∗
i )∆x by hypothesis

= lim
n→∞

(
n∑

i=1

f(x∗
i )∆x+

n∑
i=1

g(x∗
i )∆x

)
limit laws

= lim
n→∞

n∑
i=1

(f(x∗
i )∆x+ g(x∗

i )∆x) Σ property

= lim
n→∞

n∑
i=1

(f(x∗
i ) + g(x∗

i ))∆x algebra

=

∫ b

a

(f(x) + g(x))dx by R definition of the definite integral

because dom(f + g) = dom(f) ∩ dom(g)

Moreorver, [a, b] ⊆ dom(f) and [a, b] ⊆ dom(g) by R hypothesis
it follows that [a, b] ⊆ dom(f + g); as required.

Remarks 1.3.2.1.1 (Conjecture). Does
∫ 1

0
f(x)dx exists? Where f(x) =

{
1 , if x ∈ Q
0 , if x /∈ Q.

Let a, b ∈ R, a < b. If f is continuous on [a, b] or if f has a finite number of finite jump on
[a, b] then f is integrable on [a, b].

p. 14
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1.4 The Darboux Integral
Definition 1.4.1 (Darboux Sums). Let a, b ∈ R, a < b. Let P = {xi}ni=0 be any partition
of [a, b]. Suppose f is bounded on [a, b]. That is, ∃c ∈ R≥0, ∀x ∈ [a, b] s.t. |f(x)| ≤ c.
Furthermore note that it then follows for such c, −c ≤ f(x) ≤ c.

1. The Lower(Darbous) Sum for a function f with a partition P is denoted

L(f, P ) :=
n∑

i=1

mi(xi − xi−1)

where mi = inf {f(x) : x ∈ [xi−1, xi]}.

2. The Upper (Darboux) Sum for a function f with a partition P is denoted

U(f, P ) :=
n∑

i=1

Mi(xi − xi−1)

where Mi = sup {f(x) : x ∈ [xi−1, xi]}.

Definition 1.4.2 (Darboux Integral). Let a, b ∈ R, a < b. Suppose f is bounded on [a, b].

We say f is integrable on [a, b], i.e.,
∫ b

a
f(x)dx exists, iff

sup{L(f, p) : P is any partition of [a, b]}
= inf{U(f, p) : P is any partition of [a, b]}

:=

∫ b

a

f(x)dx

Pictorially,

0 1 2 3 4−1−2−3−4

1

2

3

4

x0 xn

bc

bc

Mi

mi

where the dark blue area is L(f, P ) and the light blue area is U(f, P ).

p. 15
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Example. Consider g(x) =
{
1 , if x ∈ Q
−1 , if x ∈ R \Q.

Compute U(g, P ) for any partition of [0, 3].

Solution. Let P = {xi}ni=0 be an arbitrary partition of [0, 3].
For i ∈ [1, n] ∩ N,

Mi = sup{g(x) : x ∈ [xi−1, xi]}
= sup{−1, 1}

Since Q and R \Q are dense in R, 1 and − 1 must be obtained by x ∈ R.
= 1 by definition of sup.

Thus,

U(g, P ) =
n∑

i=1

Mi(xi − xi−1) by definition

=
n∑

i=1

(xi − xi−1) since Mi = 1 as shown

= (x1 − x0) + (x2 − x1) + · · ·+ (xn − xn−1) by Σ definition
= −x0 + (x1 − x1 + · · ·+ xn−1 − xn−1) + xn associativity and commutativity
= xn − x0 algebra
= 3− 0 by definition of any partition over [0, 3], a0 = 0 and an = 3

= 3 algebra as required.

■

p. 16
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Example. Let f(x) =
{
70 + π , if x ∈ Q
0 , if x ∈ R \Q.

Prove f is not integrable on [0, 1] with Darboux definition.

Proof. WTS:

sup{L(f, p) : P is any partition of [0, 1]} ̸= inf{U(f, p) : P is any partition of [0, 1]}.

Let P = {xi}ni=0 for some i ∈ [0, n] ∩ N and n ∈ N ∪ {0} be arbitrary partition over [0, 1].
Then, for each i ∈ [1, n] ∩ N,

mi = inf{f(x) : x ∈ [xi−1, xi]}
= inf{0, 70 + π} since Q and R \Q are dense in R both outputs are obtained
= 0 by definition of inf.

Furthermore,

Mi = sup{f(x) : x ∈ [xi−1, xi]}
= sup{0, 70 + π} since Q and R \Q are dense in R both outputs are obtained
= 70 + π by definition of sup.

It then follows that

U(f, P ) =
n∑

i=1

Mi(xi − xi−1) by definition of U(f, p)

=
n∑

i=1

(70 + π)(xi − xi−1) by demonstrated fact that Mi = 70 + π

= (70 + π)
n∑

i=1

(xi − xi−1) Σ linearity since 70 + π is constant

= (70 + π) · length([0, 1]) by geometric intepretation
= (70 + π)(1− 0) definition of length
= 70 + π algebra.

p. 17
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Also,

L(f, P ) =
n∑

i=1

mi(xi − xi−1) by definition of L(f, p)

=
n∑

i=1

0(xi − xi−1) by demonstrated fact that mi = 0

=
n∑

i=1

0 algebra

= 0 algebra.

Thus, ∀P of [0, 1], U(f, P ) = 70 + π and L(f, P ) = 0 since P is arbitrary.
Then,

sup{L(f, P ) : P is any partition of [a, b]} = sup{0} by demonstrated facts of L(f, P )

= 0 def of sup

Also,

inf{U(f, P ) : P is any partition of [a, b]} = inf{70 + π} by demonstrated facts of U(f, P )

= 70 + π def of inf

Therefore,

sup{L(f, p) : P is any partition of [0, 1]} ̸= inf{U(f, p) : P is any partition of [0, 1]}.

That is, we have proven that f is not integrable on [0, 1] with Darboux definition as required.
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Definition 1.4.3 (Integrability Reformulation). Let a, b ∈ R, a < b. Suppose f is bounded
on [a, b]. We say f is integrable on [a, b], i.e.,

∫ b

a
f(x)dx exists, iff

∀ε > 0, ∃P partition of [a, b] s.t. U(f, P )− L(f, P ) < ε.

Example. Let f(x) =
{
1 , if x ∈ Q
0 , if x ∈ R \Q.

Prove
∫ 1

0

f(x)dx DNE by Integrability Reformation.

Proof. WTS

¬ (∀ε > 0, ∃P partition of [0, 1] s.t. U(f, P )− L(f, P ) < ε.) holds.

That is,
∃ε > 0, ∀P of [0, 1] s.t. U(f, P )− L(f, P ) ≥ ε holds.

Choose ϵ = e
π
> 0. Let P = {xi}ni=0 be an arbitrary partition of [0, 1].

Note that, for i ∈ [1, n] ∩ N,

mi = inf{f(x) : x ∈ [xi−1, xi]} = 0

Mi = sup{f(x) : x ∈ [xi−1, xi]} = 1.

Now,

U(f, P )− L(f, P ) =
n∑

i=1

Mi(xi − xi−1)−
n∑

i=1

mi(xi − xi−1) by definition

=
n∑

i=1

(xi − xi−1)−
n∑

i=1

0

= length([0, 1])− 0

= 1

>
e

π
by arithmetic fact

≥ e

π
= ε by our choice of epsilon

Thus we have shown the required, that is, f is not integrable on [0, 1].

p. 19



MATA37 Eric Wu Winter 2025

2 Indefinite Integral
Definition 2.0.1 (Antiderivative). An antiderivative of a continuous function f over an
interval I is a function F s.t.

∀x ∈ I, F ′(x) = f(x).

Example. Consider f(x) = ex+1 on [−2, 7].

Solution. Choose F1(x) = ex+1. Let x ∈ [−2, 7] be arbitrary.
Then,

F ′
1(x) = ex+1 · (1) = ex+1 = f(x).

■

Excercise. Is F2(x) = ex+1 + 2 also an antiderivative to f on I?

Solution. Yes. Since F ′
2(x) = ex+1 = f(x). ■

Remarks 2.0.1.0.1. Antiderivatives, when exist, are unique up to an additive constant.

Example. f(x) = xn, s.t. n ∈ R \ {−1} on I = (a, b), ∀a, b ∈ R, a < b.

Solution. Choose F (x) = xn+1

n+1
. Let x ∈ I be arbitrary. Then,

F ′(x) =
1

n+ 1
(xn+1)′ = xn = f(x).

■

Definition 2.0.2 (Indefinite Integral). The indefinite integral of a continuous function f ,
denoted

∫
f(x)dx, is an infinite family of antiderivatives of f, i.e.,

∫
f(x)dx = F (x) + C

where F (x) is some antiderivative of f and C is an arbitrary constant.
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Example. Evaluate
∫

1

4x2 + 1
dx.

Solution. Choose F (x) = arctan (2x)
2

. Then, F ′(x) = 2
1+4x2 · 1

2
= 1

4x2+1
. Thus, we have,∫

1

4x2 + 1
dx =

∫
1

(2x2) + 1
dx.

=
arctan(2x)

2
+ C by chosen F (x) as required.

■

Theorem 2.0.2.1 (Properties of Indefinite Integral). If f and g are continuous, then

i.
∫

(f(x) + g(x))dx =

∫
f(x)dx+

∫
g(x) + dx.

ii. ∀k ∈ R,
∫

kf(x)dx = k

∫
f(x)dx.

proof of (ii). Suppose f is continuous and k ∈ R is arbitrary. Consider

k

∫
f(x)dx = k(F (x) + C)

by definition of indefinite integral of f where F ′(x) = f(x), ∀x ∈ dom (F )

= kF (x) + kC by algebra

Now we claim that (kF (x))′ = kf(x). Let x ∈ dom (kf(x)) = dom(f(x). Then,

(kF (x))′ = kF ′(x) = kf(x)

since F ′(x) = f(x) on domF . Thus, the claim holds. Thus,

k

∫
f(x)dx = kF (x) + kC as shown previously

= kF (x) + C̃ where C̃ = kC is some arbitrary constant

=

∫
kf(x)dx.
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Example. Find
∫ (

sin(2x)

sin(x)
+ π7x

)
dx.
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3 The Fundamental Theorem of Calculus
Theorem 3.0.0.1 (The Fundamental Theorem of Calculus). Let a, b ∈ R, a < b. If f is
continuous on [a, b] and F is any antiderivative of f on [a, b], then∫ b

a

f(x) dx =

∫ b

a

F ′(x) dx = F (x)
∣∣∣b
a
= F (b)− F (a).

Proposition 3.0.0.2 (MVT for Definite Integral). Let a, b ∈ R, a < b. If f cont on [a, b],
then

∃c ∈ [a, b] s.t.
∫ b

a

f(x)dx = f(c)(b− a).
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Proof. Suppose f is continuous on [a, b] and F is any entiderivative of f on [a, b]. Let
P = {xi}ni be a Riemann Partition over [a, b] where ∆x = b−a

n
. Thus,∫ b

a

f(x) dx = lim
n→∞

n∑
i=1

f(x∗
i )∆x, (*)

by R definition of the definite int with continuity on [a, b] for any x∗
i ∈ [xi−1, xi].

Note that by assumption, F is differentiable on [a, b] and F is continuous on [a, b] as differ-
entiability =⇒ continuity. In particular, F is continuous on each [xi−1, xi] ⊆ [a, b] and F
is diff on each (xi−1, xi) ⊆ [a, b].
Therefore, by Mean Value Theorem (applied to F on (xi−1, xi)),

∃ci ∈ (xi−1, xi) s.t. F ′(ci) =
F (xi)− F (xi−1)

xi − xi−1

MVT

⇐⇒ F ′(ci)(xi − xi−1) = F (xi)− F (xi−1)
algebra; note that xi − xi−1 = ∆x by P and F ′(ci) = f(ci) by assumption

=⇒ F (xi)− F (xi−1) = f(ci)∆x. (**)

We choose x∗
i = ci.

Then,∫ b

a

f(x) dx = lim
n→∞

n∑
i=1

f(x∗
i )∆x R definition of definite integral

= lim
n→∞

n∑
i=1

f(c∗i )∆x by chosen x∗
i

= lim
n→∞

n∑
i=1

F (xi)− F (xi−1) by **

= lim
n→∞

((F (x1)− F (x0)) + (F (x2)− F (x1)) + · · ·+ (F (xn)− F (xn−1)))

by definition of Σ
= lim

n→∞
F (xn)− F (x0) algebra

= lim
n→∞

F (b)− F (a) by P definition

= F (b)− F (a) by limit constant law; as required.
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Example. Compute
∫ 1

0

(x2
√
x+ ex +

1

1 + x2
) dx

Solution. Let f(x) = x2
√
x + ex + 1

1+x2 . Choose F (x) = x
7
2
7
2

+ ex + arctan(x). Note that
F ′(x) = f(x).
Then, by fundamental Theorem of Calculus,∫ 1

0

(x2
√
x+ ex +

1

1 + x2
) =

(
x

7
2

7
2

+ ex + arctan(x)

)∣∣∣∣∣
1

0

= (
2

7
(1)

7
2 + e+

π

4
)− (0 + 1 + 0) algebra

= e+
π

4
− 5

7
algebra; as desired.

■
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4 Functions Defined by Integrals
Theorem 4.0.0.1 (FTOC II). Let a, b ∈ R, a < b. If f is continuous on [a, b] and define
F (x) =

∫ x

a

f(t)dt for any x ∈ [a, b], then

i. F is continuous on [a, b].

ii. F is diff on (a, b).

iii. F ′(x) = f(x), ∀x ∈ [a, b], i.e., F is antiderivative of f on [a, b] :

d

dx

(∫ x

a

f(t)dt)

)
= f(x) on [a, b].

Remarks 4.0.0.1.1 (Area Accumulation). F (x) =

∫ x

a

f(t)dt from FTOC II is called an
area accumulation function of f.

Example.Let H(x) =

∫ 4

x

et
2+1dt. Find H ′(x).

Solution. Note f(t) = et
2+1 is a composition of the exponential et and the polynomial t2+1,

both of which are continuous on their domain R. Hence, f is continuous on R.
In particular, f is continuous on, without lose of generality, [4, x] ⊂ R.

Define F (x) =

∫ x

4

f(t)dt.

Thus,

H ′(x) =
d

dx

(∫ 4

x

f(t)dt

)
=

d

dx

(
−
∫ x

4

f(t)dt

)
by
∫

properties

= − d

dx

(∫ x

4

f(t)dt

)
by diff rules

= −f(x) by FTOC II since F ′(·) = f(·)
= −ex

2+1

■
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Proof of FTOC II. Suppose f is continuous on [a, b] and define F (x) =

∫ x

a

f(t) dt for any
x ∈ [a, b]. WTS: F is continuous on [a, b] and F is diff on (a, b) and
F ′(x) = f(x), ∀x ∈ [a, b]. It suffices to show that F ′(x) = f(x), ∀x ∈ [a, b] as it necessitates
differentiability on [a, b] ⊇ (a, b) which further implies continuity on [a, b].
Case I. (Interior Points)
Let x ∈ (a, b) be arbitrary. Consider

F ′(x) = lim
h→0

F (x+ h)− F (x)

h
by definition of F ′

= lim
h→0

∫ x+h

a

f(t) dt−
∫ x

a

f(t) dt

h
by def of F

= lim
h→0

1

h

∫ x+h

x

f(t) dt demonstrated in lecture

= lim
h→0

1

(x+ h)− x

∫ x+h

x

f(t) dt by algebra: “ 1
b−a

∫ b

a

f(t) dt′′

= lim
h→0

f(c)

For some c ∈ [x, x+ h] by MVT for int since f is constant on [x, x− h] ⊆ [a, b] where c depends on h

(*)Note h → 0 ⇐⇒ |x+ h− x| → 0 ⇐⇒ |c− x| → 0

= lim
c→x

f(c) by (*)

= f(x) since f is continuous at x as x ∈ [a, b].

Case II.
Let x = a and x = b. WTS F ′

+(a) = f(a) and F ′
−(b) = f(b). This follows by analogous

argument to case I but change the 2-sided limits to appropriate LH and RH limits and
replace x = b and x = a respectively.
Remark. The reason we consider two cases is because for the first case, any derivative in
[a, b] is a two-sided limit. Whereas for the end point of the interval, a and b it is one side
limit.
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Example. Let g(x) =
∫ cos(x)

sin(x)

arctan(t) dt. Find g′(x).

Solution. Let f(t) = arctan(t). Since arctan is an inverse trig function, and so continuous on
dom(f) = R. In particular, f is continuous on, w.l.o.g., [sin(x), cos(x)] ⊂ R as the interval
symmetric. Define F (x) =

∫ x

c

f(t) dt where c is a constant s.t. c ∈ [sin(x), cos(x)]. So,

g′(x) =
d

dx

(∫ cos(x)

sin(x)

f(t) dt

)

=
d

dx

(∫ c

sin(x)

f(t) dt+

∫ cos(x)

c

f(t) dt

)
by union interval property; for any constant c between sin(x) and cos(x)

=
d

dx

(
−
∫ sin(x)

c

f(t) dt+

∫ cos(x)

c

f(t) dt

)
by def int prop

=
d

dx
(−F (sin(x)) + F (cos(x))) by definition of F

= −F ′(sin(x)) cos(x) + F ′(cos(x)) · (− sin(x)) by diff rule
= −f(sin(x)) cos(x)− f(cos(x)) sin(x) by FTOC II
= − cos(x) arctan(sin(x))− sin(x) arctan(cos(x)) by definition of f ; as required.

■
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5 Integration Techniques
5.1 Integration Techniques
5 Concerned Integrals:

i. Chapter 4 Methods (analytical, geometrical, inspection, FTOC)

ii. Substitution Rule

iii. Integration by Parts

iv. Partial Fraction Decomposition

v. Trigonometric Substitution

Theorem 5.1.0.1 (Subsitution Rule). If f(x), g(x) and f(g(x))g′(x) are continuous, then
For definite integral,∫ b

a

f(g(x))g′(x)dx =

∫ g(b)

g(a)

f(u)du where u = g(x) and du = g′(x)dx

For indefinite integral,∫
f(g(x))g′(x)dx =

∫
f(u)du where u = g(x) and du = g′(x)dx
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Proof (of definite integral). Suppose f(x), g(x) and f(g(x))g′(x) are continuous on [a, b]. Let
u = g(x) and du = g′(x)dx. By FTOC II we know F is an antiderivative of f on [−, ·]. For
the right hand side, ∫ g(b)

g(a)

f(u)du

= F (u)
∣∣∣g(b)
g(a)

by FTOC I

= F (g(b))− F (g(a))

Claim: F (g(x)) is an antiderivative of f(g(x))g′(x) on [a, b]. Let x ∈ [a, b] be arbitrary. Then,

(F (g(x)))′ = F ′(g(x)) · g′(x)
= f(g(x)) · g′(x) as F ′ = f .

Thus our claim holds. Then, for the left hand side,∫ b

a

f(g(x))g′(x)dx

= F (g(x))
∣∣∣b
a

by our claim that holds

= F (g(b))− F (g(a)).

Note, since F (g(b))− F (g(a)) = F (g(b))− F (g(a)) it follows that∫ b

a

f(g(x))g′(x)dx =

∫ g(b)

g(a)

f(u)du where u = g(x) and du = g′(x)dx; as required.
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Example. Find
∫

earctan(x)

1 + x2
dx.

Solution. Let u = arctan(x) and du = 1
x2dx. Then,∫

earctan(x)

1 + x2
dx =

∫
earctan(x) · 1

1 + x2
dx

=

∫
eudu where u = arctan(x) and du = 1

x2dx as defined

= eu + C by inspection
= earctan(x) + C by defined u.

■

Example. Find
∫ π

2

0

sin5(x) cos3(x)dx.

Solution. Let u = sin(x) and du = cos(x)dx.∫ π
2

0

sin5(x) cos3(x)dx =

∫ π
2

0

sin5(x) cos2(x) cos(x)dx

=

∫ π
2

0

sin5(x)(1− sin2(x)) cos(x)dx

=

∫ π
2

0

sin5(x)(1− sin2(x)) cos(x)dx

=

∫ 1

0

u5(1− u2)du by chosen u and du

=

∫ 1

0

u5 − u7du algebra

=

(
u6

6
− u8

8

) ∣∣∣∣∣
1

0

by FTOC I

=
1

6
− 1

8
− (0)

=
1

24
as required.

■

Exercise. Solve using u = cos(x).
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Example. Find
∫ √

2− xdx.

Solution. Let u = 2− x.du = −dx. Then,∫ √
2− xdx =

∫ √
2− x · dx.

=

∫
u

1
2 · −du

= −
∫

u
1
2du

= −u
3
2

3
2

+ C

= −2

3
(2− x)

3
2 + C by chosen u; as required.

■

Exercise. Find
∫ √

4−
√
xdx.

Example. Evaluate
∫ √

3 + x2x5dx.

Solution. Choose u = 3 + x2 and du = 2xdx.∫ √
3 + x2x5dx =

∫ √
u(u− 3)2

du

2
by chosen u and du

=
1

2

∫ √
u(u− 3)2du

=
1

2

∫
u

5
2 − 6u

3
2 + 9u

1
2du

=
1

2

(
u

7
2

7
2

− 6u
5
2

5
2

+
9u

3
2

3
2

)
+ C

=
(3 + x2)

7
2

7
− 6

5
(3 + x2)

5
2 + 3(3 + x2)

3
2 + C

■
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Theorem 5.1.0.2 (Integration by Parts). If u = f(x) and v = g(x) are diff, then

i. For definite int
∫ b

a

udv = uv
∣∣∣b
a
−
∫ b

a

vdu.

ii. For indefinite int
∫

udv = uv −
∫

vdu.

Proof of ii. We show if u = f(x) and v = g(x) are diff then
∫

udv = uv −
∫

vdu, i.e.,

∫
f(x)g′(x)dx = f(x)g(x)−

∫
g(x)f ′(x)dx.

Suppose u = f(x) and v = g(x) are diff. We know

(f(x)g(x))′ = f ′(x)g(x) + f(x)g′(x) by product rule
⇐⇒ f(x)′g(x) = (f(x)g(x))′ − g(x)f ′(x)

=⇒
∫

f(x)g′(x)dx =

∫
((f(x)g(x))′ − g(x)f ′(x))dx Integrate wrt x

=

∫
((f(x)g(x))′ −

∫
g(x)f ′(x)dx by indef int prop

= f(x)g(x)−
∫

g(x)f ′(x)dx by definition of indef int

Theorem 5.1.0.3 (Partial Fraction Decomposition).
Remarks. The propose of PFD is to rewrte certain proper rational functions into equivalent
partial fractions.
For example, f(x) = 5x+11

(x+3)(x+2)
= 4

x+3
+ 1

x+2
. Recall a rational function is a function of the

form P (x)
Q(x)

s.t. P and Q are polynomials and Q(x) ̸= 0. Where a polynomial is a function of
the form a0+a1x+a2x

2+ · · ·+anx
n for any ai ∈ R, n ∈ Z≥0 By proper we refer to the state

in which deg(P (x)) < deg(Q(x)).
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Example Write the pfd form only for the followings:

i. f(x) = 8x−12
(x+6)(x−3)

Solution.

8x− 12

(x+ 6)(x− 3)
=

A

x+ 6
+

B

x− 3
by rule 1 where A,B ∈ R

■

ii. f(x) = 9−9x
x3(x2+1)

Solution.

9− 9x

x3(x2 + 1)
=

A

x
+

B

x2
+

C

x3
+

Mx+N

x2 + 1
by rule 1 and rule 2 where A,B,C,M,N ∈ R

■

iii. f(x) = 7
(x−1)2(2x2+7)2(ex−π)

Solution.

7

(x− 1)2(2x2 + 7)2(ex− π)
=

A

x− 1
+

B

(x− 1)2
+

Cx+D

2x2 + 7
+

Mx+N

(2x2 + 7)2
+

K

ex− π
by rule 1 and rule 2 where A,B,C,D,M,N,K ∈ R

■
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Example. Evaluate
∫

x+ 5

x2 + x− 2
dx.

Solution. Note

x+ 5

x2 + x− 2
=

A

x+ 2
+

B

x− 1
=

A(x− 1) + B(x+ 2)

(x+ 2)(x− 1)

=⇒ x+ 5 = A(x− 1) + B(x+ 2)

=⇒ A = −1 ∧ B = 2 choose x = 1 and x = −2

∫
x+ 5

x2 + x− 2
dx =

∫
x+ 5

(x+ 2)(x− 1)
dx for A,B ∈ R by rule 1

=

∫
A

x+ 2
+

B

x− 1
dx by pfd rule 1 where A,B ∈ R

=

∫
−1

x+ 2
+

2

x− 1
dx by solved A ∧ B

= − ln |x+ 2|+ 2 ln |x− 1|+ C by inspection

■
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Example. Find
∫

5x3 − 3x2 + 2x− 1

x4 + x2
dx.

Solution. Note

5x3 − 3x2 + 2x− 1

x4 + x2
=

5x3 − 3x2 + 2x− 1

x2(x2 + 1)

=
A

x
+

B

x2
+

Cx+D

x2 + 1
by rule 1 and 2 for A,B,C,D ∈ R

=
A(x(x2 + 1)) + B(x2 + 1) + (Cx+D)(x2)

x4 + x2

=⇒ 5x3 − 3x2 + 2x− 1 = Ax3 + Ax+Bx2 +B + Cx3 +Dx2

= (A+ C)x3 + (B +D)x2 + Ax+B

=⇒


5 = A+ C

−3 = B +D

2 = A

−1 = B

=⇒ A = 2 ∧B = −1 ∧ C = 3 ∧D = −2.

Then,∫
5x3 − 3x2 + 2x− 1

x4 + x2
dx =

∫
A

x
+

B

x2
+

Cx+D

x2 + 1
dx by rule 1 and 2 for A,B,C,D ∈ R

=

∫
2

x
+

−1

x2
+

3x− 2

x2 + 1
dx by computed A,B,C,D

=

∫
2

x
+

−1

x2
+

3x

x2 + 1
− 2

x2 + 1
dx

= 2 ln |x|+ 1

x
+

3

2
ln(x2 + 1)− 2 arctan(x) + C

■

Excercise. Evaluate
∫

x4 − 2x2 + 4x+ 1

x3 − x2 − x+ 1
dx.
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Theorem 5.1.0.4 (Trigonometric Substitution).
Remark. The purpose is to rewrite the integrated equivalently
depending on the form: a2 + u2, u2 − a or a2 − u2, where a ∈ R+, u is a polynomial. There
are 3 trig subs:

i.
a2 + u2 → u = a tan θ, θ ∈ (

−π

2
,
π

2
).

ii.
a2 − u2 → u = a sin θ, θ ∈ [

−π

2
,
π

2
], |u| ≤ a.

iii.

u2 − a2 → u = a sec θ, θ ∈

{
[0, π

2
), if u ≥ a

(π
2
, π], if u ≤ −a.

Example. Can we apply a trig subst on the following? If so, what subs?

(a)
∫ π

0

3x+ 1√
x2 + 9

dx

Solution. Observe that type (i) trig sub is applicable as for x2 + 9, u = x ∧ a = 3
satisfies u2 + a2. Let x = 3 tan θ, θ ∈ (−π

2
, π
2
) ■

(b)
∫

(x+ 3)(4x2 − 16)5/3√
x

dx, x ≥ 2.

Solution. Observe that type (iii) trig sub is applicable as for 4x2 − 16, u = 2x∧ a = 4
satisfies u2 − a2. Let 2x = 4 sec θ, θ ∈ [0, π

2
) as x ≥ 2 ⇐⇒ 2x ≥ 4 = a. ■
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Example. Find
∫ √

x2 − 9

x3
dx, x ≥ 3.

Solution. Let u = x and 3 = a. We have a type (iii) trig sub. Let x = 3 sec θ, θ ∈ [0, π
2
) as

u = x ≥ 3 = a. Thus, dx = 3 sec θ tan θdθ.
Note x2 − 9 = (3 sec θ)2 − 9 = 32(sec2 θ − 1) = 32 tan2 θ. Thus,∫ √

x2 − 9

x3
dx =

∫ √
32 tan2 θ

33 sec3 θ
3 sec θ tan θ dθ

=

∫ √
(3 tan θ)2

32 sec2 θ
dθ

=

∫
|3 tan θ|
32 sec2 θ

dθ

=

∫
3 tan θ

32 sec2 θ
dθ as tan θ ≥ 0 for θ ∈ [0, π

2
]

=
1

3

∫
tan θ

sec2 θ
dθ

=
1

3

∫
sin2 θ dθ

=
1

3

∫ (
1− cos(2θ)

2

)
dθ

=
1

6

∫
(1− cos(2θ))dθ

=
1

6

(
θ − sin(2θ)

2

)
+ C

recall that x = 3 sec θ ⇐⇒ x

3
= sec θ ⇐⇒ θ = sec−1(

x

3
) as the interval of θ is injective.

=
1

6

(
θ − 2 sin θ cos θ

2

)
+ C

=
1

6

(
sec−1(

x

3
) +

√
x2 − 9

x
· 3
x

)
+ C by triangle method.

■
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5.2 Integration Techniques Summery
1. Geometrically: Only for def int of the forms∫ d

c

ax+ bdx ∨
∫ d

c

±
√

(r2 − (x− h)2dx.

2. By Inspection: literally attention is all you need.

3. u-subs (inverse chain rule) ∫
f(g(x))g′(x)dx =

∫
f(u)du.

4. by parts (inverse product rule)∫
f(x)g′(x)dx = f(x)g(x)−

∫
g(x)f ′(x)dx = uv −

∫
vdu.

5. PFD ∫
P (x)

Q(x)
s.t. deg(p) < deg(q).

6. trig subs

u2 − a2 u2 + a2 a2 − u2

u = a sec(θ) u = a tan(θ) u = a sin(θ)
u ≥ a =⇒ θ ∈ [0, π/2) θ ∈ (−π/2, π/2) θ ∈ [−π/2, π/2], |u| ≤ a
u ≤ −a =⇒ θ ∈ [π/2, π]

du = a sec(θ) tan(θ) du = a sec2(θ) du = a cos(θ).
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5.3 Improper Integrals

In past, we have assumed, for
∫ b

a

f(x)dx,

i. [a, b] is bounded.

ii. f(x) is bounded on [a, b], i.e., no V.A. on [a, b].

If these conditions fail, we get an improper integral.
Example.

1.
∫ ∞

0

(arctan(x))2dx - improper due to ∞ bound (type I).

2.
∫ 8

2

1√
x− 2

dx - improper due to VA at 2 (type II).

3.
∫ 1

−1

x−2dx - improper due to VA at 0 (type II).

4.
∫ π

π/2

csc(x)dx - improper due to VA at π (type II).

5.
∫ 1

−∞

cos2(2x)

x2 + 1
dx - improper due to −∞ bound (type I).

Example. Evaluate
∫ ∞

1

1

(3x+ 1)2
dx.

Solution. Intuitively, think of A as approaching to infinity. Then,∫ ∞

1

1

(3x+ 1)2
dx = lim

A→∞

∫ A

1

1

(3x+ 1)2
dx by definition of type I

= lim
A→∞

−1

3
(3x+ 1)−1

∣∣∣A
1

by inspection

= lim
A→∞

−1

3
(

1

3A+ 1
− 1

4
) by FTOC I

=
−1

3
(0− 1

4
) =

1

12
by limit type limk→∞

1
k
= 0.

∴ limit exists. The integral converges to 1/12

■
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Example. Does
∫ 5

0

ln(x)

x
dx converge/diverge?

Solution.∫ 5

0

ln(x)

x
dx = lim

A→0+

∫ 5

A

ln(x)

x
dx by definition of type II (as A → 0 from the right)

= lim
A→0+

(ln(x))2

2
A5 by inspection

= lim
A→0+

(
(ln(5))2

2
− (ln(A))2

2
)

by FTOC II; note that A → 0− =⇒ ln(A) → −∞ =⇒ (ln(A))2 → ∞
= −∞
∴ limit DNE. ∴ The improper integral diverges.

■
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Example. Does
∫ 1

−1

x−2dx converge/diverge?

Solution. ∫ 1

−1

x−2dx =

∫ 0

−1

x−2dx+

∫ 1

0

x−2dx

= lim
A→0−

∫ A

−1

x−2dx+ lim
A→0+

∫ 1

B

x−2dx by definition of type II.

Considr ∫ 0

−1

x−2dx = lim
A→0−

∫ A

−1

x−2dx

= lim
A→0−

−x−1
∣∣∣
−
1A

= lim
A→0−

(
−1

A
+

1

−1
)

= ∞

Therefore,
∫ 0

−1

x−2dx diverges. Now it suffices to show that limA→0+
∫ 1

B
x−2dx does not

evaluate to −∞. Note ∀x ∈ (0,−1], x−2 > 0. Thus,∫ 1

0

x−2dx ≥ 0.

In particular, ∫ 1

0

x−2dx ̸= −∞.

Thus, ∫ 1

−1

x−2dx diverges.

■

Exercise. (Hint: apply union property interval.) Does
∫ 1

−∞

1

x− 1
dx converge or diverge?
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Motivation. Con/Div? ∫ ∞

1

(cos(2x4 + 1)200 + 1)

(x2 + eπ)100
dx.

Theorem 5.3.0.1 (Comparison (Direct) Theorem). Suppose f, g, h are continuous on an
interval I and

∫
I

f(x)dx is an improper int.

1. If 0 ≤ f(x) ≤ g(x), ∀x ∈ I ∧
∫
I

g(x)dx converges, then

∫
I

f(x)dx also converges.

2. If 0 ≤ h(x) ≤ f(x), ∀x ∈ I ∧
∫
I

h(x)dx diverges, then

∫
I

f(x)dx also diverges.
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Example. Let f, g, h be continuous on interval I. Consider the improper integral

∫
I

f(x)dx.

Prove if 0 ≤ f(x) ≤ g(x), ∀x ∈ I and
∫
I

g(x)dx converges, then

∫
I

f(x)dx converges.

Proof. WLOG I = [a,∞) for any a ∈ R.Assume (1) 0 ≤ f(x) ≤ g(x), ∀x ∈ [a,∞) and (2),

∫ ∞

a

g(x)dx.

WTS
∫ ∞

a

f(x)dx convergences by definition, i.e., lim
A→∞

∫ A

a

f(x)dx exists.
Let A ∈ [a,∞) be arbitrary. Note,

(1) =⇒ 0 ≤ f(x) ≤ g(x), ∀x ∈ [a,A] ⊆ [a,∞)

=⇒
∫ A

a

0dx ≤
∫ A

a

f(x)dx ≤
∫ A

a

g(x)dx by def int prop

=⇒ 0 ≤
∫ A

a

f(x)dx ≤
∫ A

a

g(x)dx

=⇒ 0 ≤
∫ A

a

f(x)dx ≤
∫ A

a

g(x)dx, ∀A ≥ a as A is arbitrary, i.e., A ∈ [a,∞)

=⇒ lim
A→∞

0 ≤ lim
A→∞

∫ A

a

f(x)dx ≤ lim
A→∞

∫ A

a

g(x)dx

=⇒ lim
A→∞

0 ≤ lim
A→∞

∫ A

a

f(x)dx ≤
∫ ∞

a

g(x)dx by def type I

=⇒ lim
A→∞

0 ≤ lim
A→∞

∫ A

a

f(x)dx ≤ some constant k

by assumption (2)
∫∞
a

g(x)dx converges

we know that lim
A→∞

∫ A

a

f(x)dx is continuous on [a,A] by FTOC II

and increasing on [0, A] as f(x) ≥ 0.

∴ lim
A→∞

∫ A

a

f(x)dx exists

i.e.,
∫ ∞

a

f(x)dxconverges.
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6 Sequences
Definition 6.0.1 (Sequence). A sequence is a function an : N → R where N ⊆ N. Typically,
|N | = ∞. We denote an infinite sequence of real numbers in general terms as

{an}∞n=1.

Definition 6.0.2 (Sequence Convergence/Divergence). We say an converges to l iff
∃l ∈ R, ∀ε > 0, ∃N > 0 s.t. ∀n ∈ N, n > N =⇒ |an − l| < ε.

That is,
lim
n→∞

an = l.

We can also say an diverges to ±∞, i.e.,
∀M > 0, ∃N > 0 s.t. ∀n ∈ N, n > N =⇒ an > M ∨ an < −M.

If an > N, then an diverges to ∞ otherwise −∞.

Remark. n ∈ N =⇒ n ≥ 1 > 0.N ≥ a =⇒ n > a.
Example. Prove an = n2−2

n2+2n+2
converges to 1.

Proof. Choose l = 1 ∈ R. Let ε > 0 be arbitrary. Choose N = 2
ε
> 0. Suppose n > N.

Consider,

|an − 1| = | n2 − 2

n2 + 2n+ 2
− 1|

= |n
2 − 2− (n2 + 2n+ 2)

n2 + 2n+ 2
|

= | 2n− 4

n2 + 2n+ 1
|

=
|2||n− 2|

|n2 + 2n+ 1|

=
2(n+ 2)

n2 + 2n+ 2
assume N > 2 =⇒ n > N > 2 =⇒ n− 2 > 0

≤ 2(n+ 2)

n2 + 2n

=
2

n

<
2

N
= ε as required.
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Example. Prove if {an} and {bn} converge, then

{anbn} converges.

Proof. Suppose

1. {an} conv to some a ∈ R.

2. {bn} conv to some b ∈ R.

WTS: {anbn} conv, i.e.,

∃l ∈ R, ∀ε > 0, ∃N > 0 s.t. ∀n ∈ N, n > N =⇒ |anbn − l| < ε.

Choose l = ab ∈ R.
Let ε > 0 be arbitrary.
Note 1. =⇒ ∃N1 > 0 s.t. n > N1 =⇒ |an − a| < 1

|b|+1
ε
2
.

Note 2. =⇒ ∃N2 > 0 s.t. n > N2 =⇒ |bn − b| < 1
|a|+1

ε
2
.

Choose N = max{N1, N2, N3} > 0.
Note that 2. =⇒ ∃N3 > 0 s.t. n > N3 =⇒ |bn − b| < 1. From which it follows that
|bn| = |bn − b+ b| ≤ |bn − b|+ |b| < 1 + |b|.(∗)
Suppose n > N. Then,

|anbn − ab| = |anbn + 0− ab|
= |anbn + abn − abn − ab|
= |bn(an − a) + a(bn − b)|
≤ |bn(an − a)|+ |a(bn − b)| trig inequality
= |bn||an − a|+ |a||bn − b| def of | · |
< (1 + |b|)|an − a|+ |a||bn − b| by (∗)

< (1 + |b|) 1

1 + |b|
ε

2
+

|a|
1 + |a|

ε

2

<
ε

2
+ (1)

ε

2
as |a|

1+|a| <
|a|+1
1+|a| = 1.

= ε.
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Theorem 6.0.2.1 (Convergent Sequence Properties). Let {an} and {bn} be sequences. Let
a, b ∈ R. If an → a and bn → b, then

1. {an + bn} converges to a+ b

2. any c ∈ R, {can} converges to ca

3. {anbn} converges to ab

4. {an
bn
} converges to a

b
where b ̸= 0 and bn ̸= 0.
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Theorem 6.0.2.2. If {an} conv, then {an}’s limit is unique.

Proof. Assume {an} conv to both (1) l1 ∈ R and (2) l2 ∈ R. WTS l1 = l2 ⇐⇒ l1 − l2 = 0.
It suffices to prove

∀ε > 0, |l1 − l2| < 0.

Remark. The sufficiency can be demonstrated by its incompatibility with l1 ̸= l2 ⇐⇒
l1 < l2 ∨ l1 > l2. Suppose either case, then we can show a contradiction, therefore it is the
equivalent of l1 = l2.
Let ε > 0 be arbitrary.
Note {

(1) ∃N1 > 0 s.t. n > N1 then |an − l1| < ε
2

(2) ∃N2 > 0 s.t. n > N2 then |an − l2| < ε
2

Consider

|l1 − ln| = |l1 + 0− l2|
= |l1 − an + an − l2|
= | − (an − l1) + (an − l2)|
≤ | − (an − l1)|+ |an − l2| trig inq
= |(an − l1)|+ |an − l2|

<
ε

2
+

ε

2
provided n > max{N1, N2}

= ε as needed.
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Definition 6.0.3 (Boundedness and Monotonicity). Let {an} be a sequence. We say

1. {an} is bounded if it is bdd above and below, i.e.,

∃c ∈ R≥0 s.t. |an| ≤ c, ∀n ∈ N.

2. {an} is monotone if {an} ↑ ∀i ∈ N ∨ {an} ↓ ∀i ∈ N.
Example. {1 + (−1)n} is bounded and not monotone.
Example. en is not bounded but monotone.

Theorem 6.0.3.1 (Bounded Monotone Convergent Theorem–BMCT). If {an} is bounded
and monotone, then

{an} converges.

Proof. Suppose {an} is strictly increasing and bounded above. WTS {an} converges by
definition. WTS ∃l ∈ R, ∀ε > 0, ∃N > 0 s.t. n > N =⇒ |an − l| < ε. Consider A =
{an|n ∈ N} ⊂ R.We know A ̸= ∅ as a1 ∈ A. Then, A is bounded above by assumption.
By completeness axiom, sup(A) exists. Let such sup(A) = α. Choose l = α ∈ R. Consider
arbitrary ε > 0. Choose N ∈ N s.t. α − ε < aN . Suppose n > N. Then, by assumption of
strictly increasing and chosen N by approximation theorem,

α− ε < aN < an ≤ α < α + ε

=⇒ α− ε < an < α + ε

=⇒ |an − α| < ε as required.

x
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Example. Let {an} be sequence defined by
a1 =

√
6, an+1 =

√
6 + an if n ∈ N and n ≥ 1.

(Recursively–self-referenced-defined sequence). Prove {an} converges.
Rough, note

a1 =
√
6

a2 =
√
6 + a1 =

√
6 +

√
6

a3 =
√
6 + a2 =

√
6 +

√
6 +

√
6

... ... ...

In particular, as 0 < 6 < 9,

√
6 <

√
9 = 3√

6 +
√
6 <

√
6 +

√
9 =

√
9 = 3√

6 +

√
6 +

√
6 <

√
6 +

√
6 +

√
9 =

√
6 +

√
9 =

√
9 = 3.

... ...

Claim: {an} is (1) bounded above and (2) strictly increasing.
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Proof. of (1) WTS ∃M ∈ R, ∀n ∈ N, an ≤ M. Choose M = 3 ∈ R.
WTS an < 3, ∀n ∈ N. Consider n = 1 for the base case. Then, a1 =

√
6 <

√
9 = 3. Thus,

the base case holds.
Inductive Step: ∀k ∈ N, (ak < 3 =⇒ ak+1 < 3). Let k ∈ N be arbitrary.
Assume ak < 3 (Induction Hypothesis). WTS: ak+1 < 3. Consider ak+1, by definition

ak+1 =
√
6 + ak

<
√
6 + 3 as 6 + ak < 6 + 3 by I.H.

= 3.

By PMI, an < 3, ∀n ∈ N i.e., {an} is strictly bounded above by 3.
of (2) WTS: ∀n ∈ N, an < an+1. Let n ∈ N be arbitrary. Consider

a2n − a2n+1 = a2n − (
√
6 + an)

2 by definition of {an}
= a2n − (6 + an)

= a2n − an − 6

= (an − 3)(an + 2)

< 0 as an ∈ (0, 3) by (1) thus the left hand evaluates to negative
⇐⇒ a2n < a2n+1

=⇒ an < an+1 since √ is increasing as required.
Therefore by BMCT, {an} converges.
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7 Series
Definition 7.0.1 (Series). Let {an} be an infinite sequence. Then, a1+ · · ·+an is an infinite
series. In particular,

Sn = a1 + · · ·+ an =
∞∑
n=1

an.

Definition 7.0.2 (Convergent Series). Given
∑

an, we say
∑

an converges if

{Sn} converges.

That is,
∃S ∈ R s.t. lim

n→∞
Sn = S.

If
∑

an does not converges, we say
∑

an diverges.

Example.
∑∞

n=1 ln(
n+1
n
) converges or not.

Proof. We first observe that ln(n+1
n
) = ln(n+ 1)− ln(n). Consider

Sn = a1 + · · ·+ an

= (ln(2)− ln(1)) + (ln(3)− ln(2)) + · · ·+ (ln(n)− ln(n− 1)) + (ln(n+ 1)− ln(n))
note that it telescopes

= ln(n+ 1)− ln(1)

= ln(n+ 1).

Thus,

lim
n→∞

Sn = lim
n→∞

ln(n+ 1)

= ∞
∴ lim DNE .

Thus the series diverges.
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Theorem 7.0.2.1 (Properties of Convergent Series). If
∑

an and
∑

bn both converges,
then

i.
∑

(an + bn) converges.

ii. ∀c ∈ R,
∑

c(an) converges.

iii. lim
n→∞

an = 0 (vanishing condition).

Proof of iii. Suppose
∑

an converges, i.e., lim
n→∞

Sn = s for some s ∈ R. Consider

lim
n→∞

an = lim
n→∞

an + 0

= lim
n→∞

(a1 + · · ·+ an−1) + an − (a1 + · · ·+ an−1)

= lim
n→∞

Sn − Sn−1

= lim
n→∞

Sn − lim
n→∞

Sn−1

by assumption the series converges therefore individual limit exists
= s− s

= 0 as required.

Theorem 7.0.2.2 (Divergence Test). Given
∑

an. If lim
n→∞

an ̸= 0, then

∑
an diverges.

Proof. Recall P =⇒ Q ≡ ¬Q =⇒ ¬P. Note the contrapositive of the theorem is our
vanishing condition which has been shown already.
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Example. Does

∑∞
n=1

√
5n4+1
n2+3

conv or div?

Proof. Note that

lim
n→∞

an = lim
n→∞

√
5n4 + 1

n2 + 3

= lim
n→∞

√
5n4 + 1

n2 + 3
· 1/n

2

1/n2

= lim
n→∞

√
1/n4

√
5n4 + 1

1 + 3/n2

= lim
n→∞

√
5 + 1/n4

1 + 3/n2

=
√
5.

By divergence test theorem, this suffices for us to conclude that
∑∞

n=1

√
5n4+1
n2+3

diverges.

Definition 7.0.3 (Geometric Series). Let a, r ∈ R s.t. a ̸= 0. A series of the form

a+ ar + ar3 + · · ·+ arn + · · · =
∞∑
n=0

arn

is a geometric series. The number r is the ratio of the G.S.

Example.

1. 1− e+ e2 − e3 + . . . – yes r = −e.

2.
∞∑
n=3

π(
1

2
)n – yes r = 1

2
.

3.
∞∑
n=1

n

en
– counter-example, note that the ratio changes.
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Example. Consider

∑∞
n=0 ar

n, a, r ∈ R, a ̸= 0. For what r values does this G.S. con or div?

Proof. We prove by def, i.e. ,limn→∞ Sn =???. We know Sn = a+ar+ar2+ · · ·+arn−1+arn

by definition. From which it follows that

rSn = ar + ar2 + ar3 + · · ·+ arn + arn+1.

Thus,

Sn − rSn = (a+ ar + ar2 + · · ·+ arn−1 + arn)− (ar + ar2 + ar3 + · · ·+ arn + arn+1)

= 1− arn+1

=⇒ Sn(1− r) = a(1− rn+1)

=⇒ Sn =
a(1− rn+1)

1− r
for r ̸= 1;

=⇒ Sn = a+ a+ · · ·+ a(1)n = (n+ 1)a for r = 1

Case I., suppose r = 1.

lim
n→∞

Sn = lim
n→∞

(n+ 1)a = ±∞ for a > 0 ∨ a < 0.

Thus the limit does not exists. Therefore the geometric series diverge by definition in this
case. Case II., suppose r ̸= 1.

lim
n→∞

Sn = lim
n→∞

a(1− rn+1)

1− r
for a > 0 ∨ a < 0.

=
a

1− r
lim
n→∞

1− rn+1

=
a

1− r
(1− lim

n→∞
rn+1) =

a

1− r
for |r| < 1

else, if |r| > 1 ∨ r = −1.

Since

{rn} =


0, |r| < 1

∞, r > 1

DNE , r < −1

DNE , r = −1.

Thus, by definition,
∑

arn converges to some a
1−r

if |r| < 1

and diverges if |r| > 1 ∨ r = ±1.
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Theorem 7.0.3.1 (GS Test). Given
∑∞

n=0 ar
n, a, r ∈ R, a ̸= 0.

1. If |r| < 1, then the series converges with∑
arn =

a

1− r
.

2. If |r| ≥ 1 then our series diverges.

Example.

a.
∑∞

n=3 n!

Proof. Note limn→∞ an = limn→∞ n! = ∞ ̸= 0. Thus, by div test it diverges.

b.
∑∞

n=2 π(
7
13
)n

Proof. By GS test, as |r| = 7
13

< 1, the series converges to a
1−r

, i.e., π(7/13)2

1− 7
13

.

c.
∑∞

n=0

(
(1
2
)n − e(4

7
)n
)

Proof. Consider
∑∞

n=0

(
1
2

)n By GS, |r| = 1
2
< 1. Thus, it converges to 1

1− 1
2

= 2.

Consider
∑∞

n=0 e
(
(4
7
)
)n

. By GS, as |r| = 4
7
< 1, it converges to e

1− 4
7

= 7e
3
. By proper-

ties of convergent series,
∑∞

n=0

(
(1
2
)n − e(4

7
)n
)
converges as ’conv − conv = conv’. In

particular, the given sum converges to 2− 7e
3
.
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Theorem 7.0.3.2 (Integral Test). Given
∑

an. If f(x) is positive, continuous, decreasing
on [1,∞) and an = f(n), ∀n ∈ N then,

∞∑
n=1

an converges ⇐⇒
∫ ∞

1

f(x)dx converges.

Thus, by logical equivalence,
∞∑
n=1

an diverges ⇐⇒
∫ ∞

1

f(x)dx diverges

Proof.

Example.Consider
∑∞

n=3 ne
−n. Conv? Div?

Proof. Let an = ne−n = f(n), ∀n ∈ N s.t. n ≥ 3. Then, for x ∈ [3,∞), f(x) = xe−x. Note
that f > 0 as product of positives is positive.
For x ∈ [3,∞), f ′(x) = e−x − xe−x = e−x(1− x) since x ∈ [3,∞), f ′(x) < 0∀x ∈ [3,∞), thus
decreasing on the interval of interest. As differentiability implies continuity, f is continuous.
Thus the hypothesis of integral test is satisfied. Consider∫ ∞

3

xe−xdx = lim
A→∞

∫ A

3

xe−xdx type I

= lim
A→∞

(
[−xe−x]A3 + [−e−x]A3

)
= lim

A→∞

(
−A

eA
+

3

e3
− 1

eA
+

1

e3

)
=

4

e3

p. 57



MATA37 Eric Wu Winter 2025

Definition 7.0.4 (p series). Let p ∈ R+. A series of the form

1

1p
+

1

2p
+

1

3p
=

∞∑
n=1

1

np

is a p-series. The number p is called the p− value.

Example.

1.
∑∞

n=1
1
n
- p = 1.

2.
∑∞

n=2
1

n7·8+π - yes p = 7 · 8 + π.

3. 1√
1
+ 1√

2
+ 1√

3
+ . . . - yes p = 1

2
.

4.
∑∞

n=1
1
nn - no, as p varies.

Theorem 7.0.4.1 (p-sereis test). Given
∑∞

n=1
1
np , p ∈ R+.

1. If p ≤ 1, then
∞∑
n=1

1

np
diverges.

2. If p > 1, then
∞∑
n=1

1

np
converges.

Proof. Let an = 1
np := f(n), ∀n ∈ N. Thus, f(x) = 1

xp , ∀x ∈ [1,∞). For, x ∈ [1,∞), f(x) =
1
xp > 0. Consider two cases for f ′. Suppose p ̸= 1, then f ′(x) = (x−p)′ = −px−(p+1) < 0.
Consider

∫∞
1

f(x)dx =
∫∞
1

x−pdx. [left as exercise by integral test]

p. 58



MATA37 Eric Wu Winter 2025
Example.

∑∞
n=1

1
n
. Conv, or Div. Note that 1

n
is a p series with p = 1. Note p = 1 ≤ 1.

Thus, by p−series test,
∑∞

n=1
1
n
.

Theorem 7.0.4.2 (Direct Comparison Theorem for Series). Given
∑

an,
∑

bn,
∑

cn.

1. If 0 ≤ an ≤ bn, ∀n ∈ N and
∑

bn conv, then
∞∑
n=1

an also converges.

2. If 0 ≤ cn ≤ an, ∀n ∈ N and
∑

cn div, then
∞∑
n=1

an also diverges.

Proof of 1. Suppose 0 ≤ an ≤ bn, ∀n ∈ N and
∑

bn conv.
WTS:

∑
an converges, i.e., limn→∞ = Sn exists, i.e., {Sn} = {S1, . . . , Sn} converges.

Recall Sn = a1 + · · ·+ an. Let n ∈ N be arbitrary. Consider

Sn+1 = Sn + an+1 by definition; note that Sn ≥ 0 ∧ an+1 ≥ 0 by assumption
≥ Sn minimize sum of non-negative terms

Hence, ∀n ∈ N, Sn+1 ≥ Sn, i.e., {Sn} is increasing. By assumption,
∞∑
n=1

an ≤
∞∑
n=1

bn as an ≤ bn, ∀n ∈ N

= t such that for some t ∈ R by assumption

Note that by max of sum and an ≥ 0, ∀n ∈ N.

Sn ≤
∞∑
n=1

an.

By transitivity, it follows that Sn ≤ t, ∀n ∈ N. Thus,

∃t ∈ R s.t. ∀n ∈ NSn ≤ t

that is, {Sn} is bounded above by t.
∴ by BMCT, {Sn} converges, i.e., limn→∞ Sn exists, i.e.,∑

anconverges by definition.
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Example.

∑∞
n=3

arctan(n)

n
1
2+4n

.

Proof. I., For n ∈ N s.t. n ≥ 3, an = arctan(n)

n1/2+4n
> 0 are all positive. II., find a good comparison.

Consider

arctan(n)

n
1
2 + 4n

<
arctan(n)

4n
minimize denominator

≤ π/2

4n
properties of arctan

=
π

2
· 1

4n
as π < 4

note that this is a geometric series with r = 1
4
< 1, a = π

2

Consider
∑∞

n=3 bn =
∑∞

n=3
π
2
(1
4
)n. As 0 ≤ an ≤ bn, ∀n ∈ N and

∑
bn converges, by Direction

Comparsion,
∞∑
n=1

an also converges.
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Definition 7.0.5 (Alternating Series). A series of the form

b1 ± b2 ∓ b3 ± · · · =
∞∑
i=1

(−1)n+1bn, s.t. bn > 0

is called an alternating series.

Example.

1.
∑∞

n=2
(−1)n

ln(n)
is AS.

2.
∑∞

0=1
cos(nπ)

n!
is AS in disguise.

Theorem 7.0.5.1 (Alternating Series Test - AST). Given
∑∞

i=1(−1)n+1bn, bn > 0.
If (1), bn ≥ bn+1, ∀n ∈ N and (2), limn→∞ bn = 0, then

∞∑
n=1

(−1)n+1bn converges.

Proof. Given
∑∞

i=1(−1)n+1bn, bn > 0.
Suppose bn ≥ bn+1, ∀n ∈ N and (2), limn→∞ bn = 0. WTS:

∑∞
i=1(−1)n+1bn converges.
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Example.

∑∞
n=2

(−1)n

ln(n)
conv? div?

Proof. This is an AS with bn = 1
ln(n)

> 0. Consider limn→∞ = 1
ln(n)

= 0.

Note that for arbitrary n ≥ 2 ∈ N

n < n+ 1 =⇒ ln(n) < ln(n+ 1) =⇒ 1

ln(n)
≥ 1

ln(n+ 1)
=⇒ bn ≥ bn+1, ∀n ≥ 2 ∈ N.

As both conditions for AST suffice, the given series converges. WTS limn→∞ Sn exists, i.e.,
{Sn} converges. ’Prove using BMCD {2n − 1} conv and {2n} conv and l1 = l2.’
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Definition 7.0.6 (Absolute/Conditional convergent). A series
∑

an is said to:

1. Absolutely Converge iff ∑
|an| conv.

2. Conditionally Converge iff ∑
|an| div and

∑
an conv.

Example. Does
∑∞

n=1
sin(6n)

4n
CC, AC, div?

Proof. Consider
∞∑
n=1

|sin(6n)
4n

| =
∞∑
n=1

| sin(6n)|
4n

properties of | · |

≤
∞∑
n=1

1

4n
as sin is bounded above by 1

=
1/4

3/4
=

1

3
geometric series

As a series above is convergent, by CT,
∑∞

n=1 |
sin(6n)

4n
| converges, thus the given series abso-

lutely converges.

Example.
∑∞

n=2
(−1)n−1

n
. Consider limn→∞

1
n
= 0. ∀n ∈ N,

n < n+ 1 =⇒ 1

n
>

1

n+ 1
=⇒ bn > bn+1.

By AST,
∞∑
n=2

(−1)n−1

n
converges.

Consider
∑∞

n=2 |an| =
∑∞

n=2
1
n
by | · | def. Note that as this is a p-series with p = 1, it

diverges. Thus the given series conditionally converges.
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Theorem 7.0.6.1 (Ratio Test). Given
∑

an series such that an ̸= 0, ∀n ∈ N. Define

L = lim
n→∞

|an+1

an
| s.t. L ∈ [0,∞) ∪ {∞}.

1. If L < 1, then ∑
an AC thus also conv.

2. If L > 1, then ∑
an div.

3. If L = 1, then
inconclusive.

Proof. Given
∑

an, an ̸= 0, ∀n ∈ N. Define

L = lim
n→∞

|an+1

an
| s.t. L ∈ [0,∞) ∪ {∞}.

I.e., {
L ≥ 0, ∀ε > 0, ∃N > 0 s.t. ∀n ∈ N, n > M =⇒ |an+1

an
| < ε.

L = ∞, ∀M > 0, ∃N > 0 s.t. ∀n ∈ N, n > N =⇒ |an+1

an
| > M.

Outline.

1. If L < 1, we use bounding of PMI to show |an| is ≤ a GS: use CT.

2. if L > 1, we use bounding + div test to show
∑

an div.
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Example. Does

∑∞
n=0

en

(2n)!
conv? div?

Proof. Find L = limn→∞ |an+1

an
| = limn→∞

(
en+1

(2(n+1))!
en

(2n)!

)
= limn→∞

en+1

en
(2n)!

(2n+2)!
= limn→∞

e
(2n+2)(2n+1)

.

Note that
lim
n→∞

e

(2n+ 2)(2n+ 1)
= 0.

Thus, by RT, the given series converges.
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8 Power Series
Definition 8.0.1 (Power Series). Let {cn}∞n=0 ⊆ R. Let a ∈ R. A series of the form

c0 + c1(x− a) + c2(x− a)2 + · · ·+ cn(x− a)n + · · · =
∞∑
n=0

cn(x− a)n

is a power series centered at a. Where a is the center of a series and cn is the nth term
coefficient of power series.

Example.

1. 1 + x+ x2 + · · ·+ xn =
∑∞

n=0 x
n is a power series with a = 0 ∧ cn = 1.

2.
∑∞

n=1
(x−3)n

4n
is a PS with a = 3 ∧ cn = 1

4n
.

3.
∑∞

n=2
(4x+1)n√

n2n
is a PS with a = −1/4 and cn = 2n√

n
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Definition 8.0.2 (Taylor Series). Let f be a function that has derivatives of all orders at
x = a. A power series

∞∑
n=0

cn(x− a)n where cn =
f (n)(a)

n!

is called a Taylor Series for f If a = 0, the Taylor Series is called a MacLaurin Series.

Example. Let f(x) = ex. Find a Maclaurin Series for this function.

Solution.
∑∞

n=0
f (n)(0)

n!
xn by definition.

f (0)(x) = f(x) = ex =⇒ f(0) = 1

f ′(x) = ex =⇒ f ′(0) = 1

f ′′(x) = ex =⇒ f ′′(0) = 1.

Claim f (n)(x) = ex =⇒ f (n)(0) = 1. Thus the Maclaurin series is
∞∑
n=0

1 · xn

n!
=

∞∑
n=0

xn

n!
= ex, ∀x ∈ R.

■

Definition 8.0.3 (Radius of Convergences). Let a ∈ R. Given
∑

cn(x − a)n. The largest
value R ∈ R+ ∪ {∞} s.t. PS converges absolutely for x satisfying|x− a| < and diverges for
x satisfying |x− a| > R, is called the radius of convergence of the power series.
The interval of convergences of PS, I = {x ∈ R :

∑
cn(x− a)n converges}.

p. 67



MATA37 Eric Wu Winter 2025
Example.

∑∞
n=0

n(x+2)n

3n+1 . Find I. First note that this is a power series with a = −2 ∧ cn =
n/3n+1.

Solution. Find/compute R. (ratio test). Consider

lim
n→∞

∣∣∣∣cn+1(x− a)n+1

cn(x− a)n

∣∣∣∣ = lim
n→∞

∣∣∣∣∣( (n+1)(x+2)n+1

3n+2 )
n(x+2)n

3n+1

∣∣∣∣∣ where x ̸= a

= lim
n→∞

n+ 1

n

3n+1

3n+2

∣∣∣∣(x+ 2)n+1

(x+ 2)n

∣∣∣∣
= lim

n→∞
(1 +

1

n
)
1

3
|x+ 2|

=
1

3
|x+ 2| lim

n→∞
(1 +

1

n
)

=
|x+ 2|

3

By RT, our series AC if |x+2|
3

< 1 and div if |x+2|
3

> 1.
Thus, PS will AC for |x+ 2| < 3 and div for |x+ 2| > 3. Thus, R = 3.

Then, we check end points for x = a ± R. Consider x = −5., then we have
∑∞

n=0
n(−5+2)n

3n+1

We apply div test. Suppose n is even then, an = ∞ else to −∞. Thus, the series diverges.
Thus, our PS must div at x = 5. Consider x = 1. Consider

∑∞
n=0

n(3n)
3n·3 =

∑∞
n=0

n
3
(1)n. Div

test the series diverges as limn→∞
n
3
= ∞. Thus, we conclude that our PS diverges at x = 1.

Thus,
I = (−5, 1).

■
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