Cantors' Diagnol Argument (1891)

References to Professor Philip Kremer's Lecture in PHLC51.

Theorem 0.0.0.1 (Reals Strictly Dominate Naturals).

For the set of naturals, \mathbb{N} and the set of reals, \mathbb{R} ,

$$\mathbb{N} \prec \mathbb{R}$$
.

Proof. We show that (1) $\mathbb{N} \leq \mathbb{R}$ and (2) $\mathbb{N} \not\approx \mathbb{R}$.

First, as $\mathbb{N} \subseteq \mathbb{R}$, it follows that $\mathbb{N} \preceq \mathbb{R}$. Thus, we have shown (1) as required.

Now, suppose to the contrary $\mathbb{N} \approx \mathbb{R}$. Thus, there is a one-one function f from \mathbb{N} onto \mathbb{R} . Consider such function f with equinumerous assignment:

$$f(0) = 0.\underline{1}314 \dots$$

 $f(1) = 0.\underline{26}79 \dots$
 $f(2) = 0.64\underline{2}5 \dots$
 $f(3) = 0.474\underline{3} \dots$
 $\vdots \vdots \vdots \vdots \dots$

until all real numbers are mapped.

Now let d_n be $(n+1)^{th}$ diagonal, i.e., the $(n+1)^{th}$ digit after decimal of f(n) underlined. We define a Cantor number $c = 0.c_0c_1c_2...c_n$ s.t.

$$c_n = \begin{cases} 9, & \text{if } d_n \in \{0, 1, 2, 3, 4\} \\ 1, & \text{if } d_n \in \{5, 6, 7, 8, 9\} \end{cases}$$

where c_n is the $(n+1)^{th}$ digit of c.

Then, $c_n \neq d_n, \forall n \in \mathbb{N}$ by construction. (*)

However, as f is from \mathbb{N} onto \mathbb{R} , every outputs, including c must be mapped by some $m \in \mathbb{N}$. Consider such m for f(m) = c. Then,

$$f(m) = c = 0.c_0c_1c_2\dots c_m$$

where c_m is the $(m+1)^{th}$ digit of c.

But the $(m+1)^{th}$ diagonal also, by definition, happen to be d_m .

From which it follows that $c_m = d_m$. As n is arbitrary, by (*), we have derive a contradiction where

$$c_m \neq d_m \wedge c_m = d_m.$$

Thus, it must be that $\mathbb{N} \not\approx \mathbb{R}$. Therefore it is demonstrated that

 $\mathbb{N} \prec \mathbb{R}$, i.e., Reals strictly dominate Naturals.