Cantors' Diagnol Argument (1891) References to Professor Philip Kremer's Lecture in PHLC51. Theorem 0.0.0.1 (Reals Strictly Dominate Naturals). For the set of naturals, \mathbb{N} and the set of reals, \mathbb{R} , $$\mathbb{N} \prec \mathbb{R}$$. *Proof.* We show that (1) $\mathbb{N} \leq \mathbb{R}$ and (2) $\mathbb{N} \not\approx \mathbb{R}$. First, as $\mathbb{N} \subseteq \mathbb{R}$, it follows that $\mathbb{N} \preceq \mathbb{R}$. Thus, we have shown (1) as required. Now, suppose to the contrary $\mathbb{N} \approx \mathbb{R}$. Thus, there is a one-one function f from \mathbb{N} onto \mathbb{R} . Consider such function f with equinumerous assignment: $$f(0) = 0.\underline{1}314 \dots$$ $f(1) = 0.\underline{26}79 \dots$ $f(2) = 0.64\underline{2}5 \dots$ $f(3) = 0.474\underline{3} \dots$ $\vdots \vdots \vdots \vdots \dots$ until all real numbers are mapped. Now let d_n be $(n+1)^{th}$ diagonal, i.e., the $(n+1)^{th}$ digit after decimal of f(n) underlined. We define a Cantor number $c = 0.c_0c_1c_2...c_n$ s.t. $$c_n = \begin{cases} 9, & \text{if } d_n \in \{0, 1, 2, 3, 4\} \\ 1, & \text{if } d_n \in \{5, 6, 7, 8, 9\} \end{cases}$$ where c_n is the $(n+1)^{th}$ digit of c. Then, $c_n \neq d_n, \forall n \in \mathbb{N}$ by construction. (*) However, as f is from \mathbb{N} onto \mathbb{R} , every outputs, including c must be mapped by some $m \in \mathbb{N}$. Consider such m for f(m) = c. Then, $$f(m) = c = 0.c_0c_1c_2\dots c_m$$ where c_m is the $(m+1)^{th}$ digit of c. But the $(m+1)^{th}$ diagonal also, by definition, happen to be d_m . From which it follows that $c_m = d_m$. As n is arbitrary, by (*), we have derive a contradiction where $$c_m \neq d_m \wedge c_m = d_m.$$ Thus, it must be that $\mathbb{N} \not\approx \mathbb{R}$. Therefore it is demonstrated that $\mathbb{N} \prec \mathbb{R}$, i.e., Reals strictly dominate Naturals.