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1 Regression Analysis

1.1 Statistical Parameters

Definition 1.1.1 (Population Statistics). For a given population, the parameters of interest
are:

1. µ := Mean

2. σ := Standard Deviation; with σ2 := variance such that

σ2 =
1

n

n∑
i=1

(xi − µ)2 .

3. p := proportion, i.e.,
part

total
.

4. Median, Percentile, ...

5. In particular, the Pearson Correlation Coefficient ρ of two variables x, y is given by

ρ =
cov (x, y)

std (x) std (y)
=

σxy

σxσy

.

Definition 1.1.2 (Sample Statistics). By similar fashion, for a given sample, the parameters
of interest are:

1. x := Variable of interest

2. x̄ := Sample Mean

3. S := Sample Standard Deviation; with S2 := variance such that

S2 =
1

n− 1

n∑
i=1

(xi − x̄)2 .

4. p̂ := proportion, i.e.,
part

total
.

5. Median, Percentile, ...

6. In particular the Pearson Correlation Coefficient r of two variables, x, y is given by

rx,y =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2 ·
√∑n

i=1(yi − ȳ)2
=

SXY

SXSY

.
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1.2 Simple Regression

Definition 1.2.1 (Simple Regression). For any given population, we assume

y = β0 + β1x+ u

where y = β0 + β1x + u is called a Simple Linear Regression Model such that y is depen-
dent, x is independent (explanatory), β0 is the y−intercept, β1 is the slope, and u is the
error/noises/disturbance.

Example. One can hypothesize the relation of wage and education level as such

wage = β0 + β1education + u.

Definition 1.2.2 (Ordinary Least Squares estimators). Select a random sample of size n
from the population where we hypothesized

y = β0 + β1x+ u.

Now, we estimate such correlation by

ŷ = β̂0 + β̂1x

which is determined by our sample. In particular,

β0 = ȳ − β1x̄, β1 =
Sxy

S2
x

,

with the ordinary least squares method–this we call the line of best fit.

Proof. Define the residue, ε̂i
2 = (yi − ŷi)

2. In a fit model, we have
∑

i ε̂i
2 = min (

∑
i(εi)

2) .
Note that

∂

∂β̂0

∑
i

û2
i = 0 =⇒

∑
i

(
yi − β̂0 − β̂1xi

)
= 0 (1)

∂

∂β̂1

∑
i

û2
i = 0 =⇒

∑
i

xi

(
yi − β̂0 − β̂1xi

)
= 0 (2)

=⇒ β̂1 =
cov (x, y)

var (x)
=

Sxy

S2
x

by (1 and 2)

=⇒ β̂0 = ȳ − β̂1x̄. by (1 and 2); as needed
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Definition 1.2.3 (Analysis of Variance – ANOVA). Let

1. Sum of Squared Total

SST :=
n∑

i=1

(yi − ȳ)2

2. Sum of Squared Explained

SSE :=
n∑

i=1

(ŷi − ȳ)2

3. Sum of Squared Residual (Error)

SSR :=
n∑

i=1

(yi − ŷi)
2

Note that SST measures the total variation of y; SSE measures the sample variation of
estimation around the mean of y; SSR measures the variation between the estimated and
the actual. In particular, we can form an ANOVA table:

df SS MS F
Explained 1 SSE MSE MSE/MSR
Residual n− 2 SSR MSR
Total n− 1 SST

Where

MS =
SS

df
.

Definition 1.2.4 (Goodness of Fit). We define R−squared which measures the goodness of
fit as

R2 :=
SSE

SST
= 1− SSR

SST
.

We can intuitively understand it as the explanatory variation over the actual variation, i.e.,
the fraction of the sample variation of y that is explained by x. Clearly, R2 ∈ [0, 1] .

p. 3
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Axiom 1.2.5 (Gauss–Markov Assumptions). The Gauss-Markov Assumptions assume

SLR1. Linear in Parameters.

SLR2. Random Sampling.
A random sample of size n, (xi, yi), i = 1, 2, . . . , n, is selected from the population
model.

SLR3. Sample Variation in the Explanatory Variable.
The values xi, i = 1, 2, . . . , n are not the same value.

SLR4. Zero Conditional Mean for the Error Term u.
In other words, E(u | x) = 0.

SLR5. Homoskedasticity.
The error u has the same variance given any value of the explanatory variable. In
other words,

Var(u | x) = σ2.

SLR1 to SLR5 are called the Gauss-Markov assumptions. Under the Gauss-Markov
assumptions, it can be proved that

Var(β̂1) =
σ2∑n

i=1(xi − x̄)2
and Var(β̂0) =

σ2(n−1
∑n

i=1 x
2
i )∑n

i=1(xi − x̄)2
.

We skip the proof here as it is beyond both the scope and purpose of elementary econo-
metric.

Only SLR1 to SLR4 are required to show that β̂0 and β̂1 are unbiased estimators for β0

and β1; in other words,
E(β̂0) = β0 and E(β̂1) = β1.

p. 4
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Definition 1.2.6 (Linear Model). Beyond “naive” linear regression model, namely

y = β0 + β1x+ u,

we also have different models that are linear in the parameters: β0, β1 are linear:

1. Naive Linear:
y = β0 + β1x+ u,

where 1 unit change in x is associated with β1 unit change in y.

2. Linear/Log:
y = β0 + β1 ln(x) + u,

where 1% change in x is associated with 1
100

β1 change in y.

3. Log/Linear:
ln(y) = β0 + β1x+ u,

where 1 unit change in x is associated with 100β1% change in y.

4. Log/Log:
ln (y) = β0 + β1 ln (x) + u,

where 1% change in x is associated with β1% unit change in y. We call β1 in this case
the elasticity of y with respect to x,

β1 =
∆y

∆x

x

y
.

1.3 Multiple Regression Analysis: Estimation

Definition 1.3.1 (Multiple Regression Model). We may as well incorporate more than one
explanatory variables on y, i.e., consider the model

y = β0 + β1x1 + · · ·+ βkxk = β0 +
k∑

j=1

βjxj + u,

Where k explanatory variables are incorporated and u denote, again, the noises; β0 the
intercept.

p. 5
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Definition 1.3.2 (ANOVA-Multiple Regression). Similarly, with k number of independent
variables we obtain the ANOVA table

df SS MS F
Explained k SSE MSE MSE/MSR
Residual n− 1− k SSR MSR
Total n− 1 SST

Definition 1.3.3 (Adjusted R2). We define the adjusted R2, R2
adj such that

R2
adj := 1− SSR/(n− 1− k)

SST/(n− 1)
= 1− n− 1

n− 1− k
(1−R2).

The reason for such construction is to make sure that in a multiple regression model; the
fraction of the variation explained by explanatory variables is accounted by the number of
variables used. It can be shown easily that

k → ∞ =⇒ R2 = 1.

Thus, such construction will give us a better goodness of fit. In particular note that as
n−1

n−1−k
> 1, it follows that

R2
adj < R2.

1.4 Multiple Regression Analysis: Inferences

Axiom 1.4.1 (Classical Linear Model Assumptions). The Classical Linear Model (CLM)
Assumptions assume Gauss-Markov + Normality Assumptions

SLR1. Linear in Parameters.

SLR2. Random Sampling.
A random sample of size n, (xi, yi), i = 1, 2, . . . , n, is selected from the population
model.

SLR3. Sample Variation in the Explanatory Variable.
The values xi, i = 1, 2, . . . , n are not the same value.

SLR4. Zero Conditional Mean for the Error Term u.
In other words, E(u | x) = 0.

SLR5. Homoskedasticity.
The error u has the same variance given any value of the explanatory variable. In
other words,

Var(u | x) = σ2.

SLR6. Normality.
u ∼ N

(
0, σ2

)
.

p. 6
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Theorem 1.4.1.1 (Normal Sampling Distribution). Under the CLM assumptions,

β̂j ∼ Normal[βj,Var(β̂j)],

where

Var(β̂j) =
σ2

SSTj(1−R2
j )
,

for j = 1, 2, . . . , k, and

SSTj =
n∑

i=1

(xij − x̄j)
2

is the total sample variation in xj, and R2
j is the R-squared from regressing xj on all other

independent variables (and including an intercept).

It is very tedious to find Var(β̂j) using a calculator. We will use R to find the values of

Var(β̂j) and se(β̂j) = standard error(β̂j) =

√
Var(β̂j).

Theorem 1.4.1.2 (Inference about Overall Significance of a Regression: F-test). The pop-
ulation model is

y = β0 + β1x1 + β2x2 + · · ·+ βkxk + u.

The hypotheses are

H0 : β1 = β2 = · · · = βk = 0 (Model is NOT significant)

H1 : Some βj ̸= 0 (Model is significant)

Or
H1 : At least one βj ̸= 0 (Model is significant)

The test statistic is

F =
MSE

MSR
, df = (k, n− 1− k)

It is easy to show that

F =
MSE

MSR
=

R2/k

(1−R2)/(n− 1− k)
.
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Theorem 1.4.1.3 (Inference about Single Population Parameter: t-test). The population
model is

y = β0 + β1x1 + β2x2 + · · ·+ βkxk + u.

• H0 : βj = c. The test statistic is

t =
β̂j − c

se(β̂j)
, df = n− 1− k;

where

se(β̂j) = Standard Error(β̂j) =

√
Var(β̂j)

. Note that H1 : βj ̸= c is a two-tail test.

• A 1− α confidence interval for βj is

β̂j ± tα/2 se(β̂j)

An important case in regression analysis is to test the significance of each independent
variable.

In this case, H0 : βj = 0 and the test statistic is

t =
β̂j

se(β̂j)
, df = n− 1− k.

p. 8
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Theorem 1.4.1.4 (Inference about a Subset of Parameters In the Model). We have:
Unrestricted (Full) model:

y = β0 + β1x1 + β2x2 + · · ·+ βkxk + u

Restricted (Reduced) model:
A restricted (reduced) model is a model excluding q independent variables from the unre-
stricted (full) model. For notational simplicity, assume that it is the last q independent
variables that are excluded. Then the Restricted (Reduced) model is

y = β0 + β1x1 + β2x2 + · · ·+ βk−qxk−q + u

The hypotheses to be tested is H0 : the restriction holds i.e.,

H0 : βk−q+1 = βk−q+2 = · · · = βk = 0

And H1 : the restriction does not hold, i.e.,

H1 : At least one of βk−q+1, . . . , βk ̸= 0

F =
(SSRr − SSRur)/q

SSRur/(n− 1− k)
, df = (q, n− 1− k);

where SSRr is the Sum of Squared Residuals from the Restricted Model, and SSRur is
the Sum of Squared Residuals from the Unrestricted Model.

This F test is called the partial F test. Note that the partial F test can be written in
various ways:

F =
(SSRr − SSRur)/q

SSRur/(n− 1− k)
=

(SSEur − SSEr)/q

SSEur/(n− 1− k)
=

(R2
ur −R2

r)/q

(1−R2
ur)/(n− 1− k)

.

Remark. The purpose here is to determine whether including the additional q regressors
significantly improves the model’s explanatory power.

p. 9
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Proposition 1.4.1.5 (Data Scaling). Given a regression model on the price of house and
its size:

p = β0 + β1sqft+ u.

We for sample estimation
p̂ = β0 + β1(sqft).

We can have the change of metrics for sqft to square meters for example. Define

meter = 0.092903 sqft.

Then, we have
p̂ = β̃0 + β̃1(meter).

We can solve for β̃0 and β̃1 :

β̃0 + β̃1(meter) = β̃0 + β̃1(0.092903 sqft) by metric equivalence

= β0 + β1(sqft) as p̂ preserves over scaling

=⇒ β̃1 =
1

0.092903
β1 and β0 = β̃0.

The predicted value p̂ remains invariant under scaling and shifting of regressors, provided
that the regression coefficients are reparameterized accordingly. In nonlinear models like log-
log, functional form is preserved and interpretation of coefficients (e.g., elasticity) remains
valid.

p. 10
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1.5 Multiple Regression Analysis: Interactions

Definition 1.5.1 (Quadratic Model). Quadratic functions are used quite often in applied
economics to capture decreasing or increasing marginal effects. We consider the simplest
case as an example of quadratic regression. The simplest quadratic model is:

y = β0 + β1x+ β2x
2 + u

For example, let y = wage (in dollars per hour) and x = exper (years of experience).
However, β1 does not directly measure the change in y with respect to x, since it makes no
sense to hold x2 fixed while changing x.

We write the estimated regression equation as:

ŷ = β̂0 + β̂1x+ β̂2x
2

Taking the derivative with respect to x:

dŷ

dx
= β̂1 + 2β̂2x

This implies that the slope of the relationship between x and y depends on the value of
x; the estimated marginal effect is β̂1 + 2β̂2x.

Example. Consider the estimated regression equation:

ŵage = 3.73 + 0.298 · exper − 0.0061 · exper2

with standard errors:
(0.35) (0.041) (0.0009)

Sample size n = 526, R2 = 0.093
Taking the derivative:

d

d(exper)
ŵage = 0.298− 2(0.0061) · exper

• When exper = 1: ∆wage ≈ 0.298− 2(0.0061)(1) = 0.286

• When exper = 10: ∆wage ≈ 0.298− 2(0.0061)(10) = 0.176

This shows that experience has a diminishing effect on wage increase.

The curve initially rises, indicating increasing wages with experience, but flattens out
and eventually declines, illustrating diminishing returns to experience.

p. 11
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Definition 1.5.2 (Interaction Terms: Two continuous variables). Sometimes, the change of
the response variable depends on the change of an explanatory variable and also on another
explanatory variable. For example, consider the model:

y = β0 + β1x1 + β2x2 + β3x1x2 + u

The partial effect of x1 on y is:

d

dx1

y = β1 + β3x2

The above equation says that the change of y corresponding to the change of x1 also
depends on the value of x2.

In this case, we say that the two variables x1 and x2 interact, and the variable defined
by x1x2 is the interaction term.

Definition 1.5.3 (Dummy Variables). Simple regression can also be applied to the case
where x is a binary variable, often called a dummy (or qualitative, indicator) variable.
A binary variable takes on only two values represented by x = 0 and x = 1.

For example, we use a binary variable to describe whether a worker participates in a job
training program or not. We use train = 1 to mean a worker participates, and train = 0 to
mean a person does not participate.

Another example is to define x = 0 if a person’s gender is male, and x = 1 if a person’s
gender is female.

Remarks 1.5.3.0.1. Note that for any binary variable, say female,

female = 1−male,

by intuitive logical deduction.

p. 12
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Definition 1.5.4 (Interaction Between Two Binary Variables). Consider the population
regression of log earnings Y = ln(Earnings) on two binary variables:

• D1 = 1 if the person graduated from college, 0 otherwise;

• D2 = 1 if the person is female, 0 if the person is male.

Suppose the population linear regression model is:

Y = β0 + β1D1 + β2D2 + u

In this model:

• β1 is the effect of having a college degree, holding gender constant.

• β2 is the effect of being female, holding schooling constant.

Using this model:

• The log earnings for females: Y = (β0 + β2) + β1D1 + u

• The log earnings for males: Y = β0 + β1D1 + u

In this case, the effect of a college degree on Y is β1, which is the same for both females
and males.

However, there is no reason this must be so. That is, the effect on Y of D1, holding D2

constant, could depend on the value of D2. In other words, there could be an interaction
between having a college degree and gender, such that the effect on a person with a college
degree differs by gender.

We modify the model to:

Y = β0 + β1D1 + β2D2 + β3(D1 ×D2) + u

The new regressor, the product D1 ×D2, is called the interaction term, and this specifi-
cation is called an interaction regression model.

Using the interaction regression model:

• The log earnings for females:

Y = (β0 + β2) + (β1 + β3)D1 + u

• The log earnings for males:
Y = β0 + β1D1 + u

In this interaction regression model:

• The effect of a college degree on Y is β1 + β3 for females.

• The effect of a college degree on Y is β1 for males.

Thus, the effect of a college degree depends on the gender of the person.

p. 13
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Definition 1.5.5 (Interaction between a Continuous and a Binary Variable). Consider the
population regression of Y (for example, Y = ln(Earnings)) on one continuous variable X
(e.g., the individual’s years of work experience), and one binary variable D (e.g., D = 1 if
the person graduated from college, 0 otherwise).

There are three possibilities:
1. Different intercepts, same slope

Y = β0 + β1X + β2D + u

• For D = 0: Y = β0 + β1X + u

• For D = 1: Y = (β0 + β2) + β1X + u

2. Different intercepts, different slopes

Y = β0 + β1X + β2D + β3(X ×D) + u

• For D = 0: Y = β0 + β1X + u

• For D = 1: Y = (β0 + β2) + (β1 + β3)X + u

3. Same intercept, different slopes

Y = β0 + β1X + β2(X ×D) + u

• For D = 0: Y = β0 + β1X + u

• For D = 1: Y = β0 + (β1 + β2)X + u

p. 14
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Graphically,

The graph illustrates the three cases described above:

• Different intercepts, same slope;

• Different intercepts, different slopes;

• Same intercept, different slopes.

p. 15
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1.6 Multiple Regression Analysis: Qualitative Information

We have discussed some dummy (binary, qualitative) variables in previous lectures/chapters.
In this chapter we will provide more comprehensive analysis of how to include qualitative
variables into multiple regression models.

Definition 1.6.1 (Dummy/Binary/Zero-One/Categorical Variable). Qualitative informa-
tion often comes in the form of binary information. Examples include:

• a person is female or male

• a person does or does not own a personal computer

• a firm offers a certain kind of employee pension plan or it does not

• a province administers a particular COVID-19 policy or it does not

Consider the multiple regression model:

wage = β0 + β1 · female+ β2 · educ+ u

• wage: a person’s hourly wage

• female: binary variable; 1 if the person is female, 0 if male

• educ: a person’s years of education

In this model, wage and educ are continuous, and female is a binary variable.
Case 1: Female

wage = β0 + β1 + β2 · educ+ u

Case 2: Male
wage = β0 + β2 · educ+ u

Therefore, β1 measures the difference in average wage between females and males, holding
education constant.

If β1 < 0, it indicates a wage penalty for being female.
In terms of expectations:

β1 = E(wage | female = 1, educ)− E(wage | female = 0, educ)

p. 16
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Definition 1.6.2 (The Dummy Variable Trap). It is redundant to include both female and
a second dummy male = 1− female, since:

female+male = 1

This creates a perfect linear relationship, causing perfect multicollinearity—a violation of
the assumptions in linear regression. This is called the dummy variable trap.

In our model, we chose males to be the base group (or benchmark group). That is:

• β0 is the intercept for males,

• β1 is the difference in intercepts for females vs. males.

This interpretation generalizes to any dummy variable setup: one group is omitted to avoid
multicollinearity, and the coefficients on the included dummies measure effects relative to
the omitted base group.

Definition 1.6.3 (Non-Binary Dummy Variable). We can use dummy variables with more
than two categories. Suppose we wish to estimate the effect of credit rating (CR) on the
municipal bond interest rate (MBR).

CR is a categorical variable that takes on 5 values, CR = {0, 1, 2, 3, 4}, with 0 being the
worst rating and 4 being the best. The question is: how do we incorporate the variable CR
into a model to explain MBR?

One possibility is to include CR as a single explanatory variable:

MBR = β0 + β1CR + u

Then β1 is the change in MBR for a one-unit increase in CR. However, interpreting a
“one-unit change” is problematic. While CR = 4 is better than CR = 3, is the one-unit
difference from 1 to 2 the same as from 0 to 1? If not, it is inappropriate to assume a
constant marginal effect β1 of CR on MBR.

A better approach is to define binary (dummy) variables for each value of CR. Let:

CR1 =

{
1 if CR = 1

0 otherwise
, CR2 =

{
1 if CR = 2

0 otherwise
, etc.

Then the model becomes:

MBR = β0 + δ1CR1 + δ2CR2 + δ3CR3 + δ4CR4 + u

p. 17
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We only include four binary variables CR1, CR2, CR3, CR4 even though CR has five cate-
gories {0, 1, 2, 3, 4}.

Including an additional variable CR0 (equal to 1 if CR = 0, 0 otherwise) would create
perfect multicollinearity, as:

CR0 = 1− (CR1 + CR2 + CR3 + CR4)

Hence, category CR = 0 serves as the base group or benchmark group. Its effects are
captured by the intercept β0, and each δj measures the difference in MBR between category
CR = j and the base category CR = 0.

Definition 1.6.4 (Binary Dependent Variable: Linear Probability Model–LPM). n previous
lectures, we have learned multiple linear regression models, with a continuous dependent
variable, and continuous or binary explanatory variables. The dependent variable y has
quantitative meaning, for example, y is a dollar amount, a test score, a percentage, or the
logs of these. What happens if we want to use multiple regression to explain a qualitative
event? If you apply for a loan in a bank, the bank will either approve the loan or deny the
loan. Loan applications are complicated and so is the process by which the loan officer makes
a decision. The loan officer must forecast whether the applicant will make his or her loan
payments. One important piece of information is the size of the required payments relative
to the applicant’s income. As anyone who has borrowed money knows, it is much easier to
make payments that are 10% of your income than 50%! Therefore we begin by looking at
the relationship between the following two variables:

• The binary dependent variable deny, which equals 1 if the loan application is denied,
and 0 if approved.

• The payment-to-income ratio (P/I ratio), a continuous explanatory variable defined
as the ratio of monthly loan payment to monthly income.

Suppose the OLS regression of deny on the explanatory variable P/I ratio, based on
2,380 observations, is:

d̂eny = −0.080 + 0.604 · P/I ratio

(0.032) (0.098)

The estimated coefficient on P/I ratio is positive and statistically significant at the 1%
level:

t =
0.604

0.098
= 6.13

p. 18
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This implies that applicants with higher payment-to-income ratios are more likely to be
denied. This regression can be used to estimate:

• The change in the probability of denial for a change in P/I ratio:

For example, if P/I ratio increases by 0.1, the probability of denial increases by:

0.604× 0.1 = 0.0604 = 6.04%

• The probability of denial given a value of P/I ratio:

If P/I ratio = 0.3, then:

d̂eny = −0.080 + 0.604 · 0.3 = 0.101

So the estimated probability of denial is 10.1%.

Now we add race as a dummy variable. To explore the effect of race, suppose we include
a binary variable black, where:

• black = 1 if the applicant is Black;

• black = 0 if the applicant is White.

Suppose the new regression is:

d̂eny = −0.091 + 0.559 · P/I ratio+ 0.177 · black

(0.029) (0.089) (0.025)

The coefficient on black, 0.177, indicates that, controlling for P/I ratio, Black applicants
are estimated to have a 17.7% higher probability of loan denial than White applicants.

The t-statistic also indicates that the race variable is statistically significant.
However, it is premature to conclude racial bias based solely on this model. Other factors,

such as credit history, earning potential, and location, could also play a role.
Further conclusions should be drawn only after more comprehensive models, such as

Probit and Logit regression, are considered.
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1.7 Homoskedasticity vs. Hetroskedasticity

Definition 1.7.1 (Homoskedasticity). A model is said to be Homoskedastic if

var (u|x) = σ2,

i.e., the variance of the error term is constant given any value of the explanatory variable.
If the errors ui exhibit heteroskedasticity, then:

Var(ui | xi) = σ2
i

That is, the variance of ui depends on xi.
The simple regression model is:

yi = β0 + β1xi + ui

Let x̄ and ȳ be the sample means. The difference between the regression equation and
the line through the means is:

yi − ȳ = β1(xi − x̄) + ui

From simple regression, we have:

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
=

∑n
i=1(xi − x̄)[β1(xi − x̄) + ui]∑n

i=1(xi − x̄)2
= β1 +

∑n
i=1(xi − x̄)ui∑n
i=1(xi − x̄)2

Hence,

Var(β̂1) = Var

(
β1 +

∑n
i=1(xi − x̄)ui∑n
i=1(xi − x̄)2

)
= Var

(∑n
i=1(xi − x̄)ui∑n
i=1(xi − x̄)2

)
=

1

[
∑n

i=1(xi − x̄)2]
2Var

(
n∑

i=1

(xi − x̄)ui

)

=
1

[
∑n

i=1(xi − x̄)2]
2

n∑
i=1

(xi − x̄)2Var(ui)

=
1

[
∑n

i=1(xi − x̄)2]
2

n∑
i=1

(xi − x̄)2σ2
i .
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White (1980) showed that:

V̂ar(β̂1) =
1

[
∑n

i=1(xi − x̄)2]
2

n∑
i=1

(xi − x̄)2û2
i

which can be computed from sample data after estimating the OLS regression.

A similar idea extends to multiple regression models. With an estimate of Var(β̂1), we
can perform an F -test for heteroskedasticity:

H0 : Var(u | x1, x2, . . . , xk) = σ2 (No Heteroskedasticity)

H1 : Var(u | x1, x2, . . . , xk) ̸= σ2 (Heteroskedasticity exists)

Theorem 1.7.1.1 (Breusch-Pagan Test for Hetroskedasticity). The multiple regression
model is:

y = β0 + β1x1 + β2x2 + · · ·+ βkxk + u

The hypotheses to be tested are:

H0 : Var(u | x1, x2, . . . , xk) = σ2 (No Heteroskedasticity)

H1 : Var(u | x1, x2, . . . , xk) ̸= σ2 (Heteroskedasticity exists)

Breusch-Pagan (BP) Test Procedures:

• Estimate the model by OLS as usual. Obtain the squared residuals, û2
i , for i =

1, 2, . . . , n (one squared residual per observation).

• Regress û2
i on the original explanatory variables x1, x2, . . . , xk.

The F -statistic from the ANOVA table of this regression is the BP test statistic. Use
it to test for the presence of heteroskedasticity. If detected, adjust/drop variables until
the presence is rejected.
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1.8 Multicollinearity

Definition 1.8.1 (Multicollinearity).

• In a multiple regression study, we assume that the x variables are independent of each
other. Intuitively thinking, we assume that each x variable contains a unique piece of
information about y.

• In this multiple regression with two independent variables, the coefficients β1 and β2

are:

– β1 = the change in y for a 1-unit change in x1, with x2 held constant; in calculus,

β1 =
∂y

∂x1

.

– β2 = the change in y for a 1-unit change in x2, with x1 held constant; in calculus,

β2 =
∂y

∂x2

.

• Two explanatory (independent) variables are collinear when they are correlated with
each other.

• Let r be the correlation coefficient between the two explanatory variables. It is well
known that −1 ≤ r ≤ 1.

– If r = 1 or −1, the two explanatory variables are perfectly correlated. This
situation is called perfect collinearity or perfect multicollinearity. Only one of
these two explanatory variables should be used in the multiple regression model.

– When r ≈ 0, the two explanatory variables are not correlated, and there is no
collinearity (or multicollinearity) problem in the regression model.

– If −1 < r < 1 and r ≈ 0, the two explanatory variables are not perfectly cor-
related. When r is closer to 1 or −1, the collinearity (or multicollinearity) is
stronger and there will be problems in the regression model. This is the issue of
collinearity or multicollinearity.
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Proposition 1.8.1.1 (The effects of Multicollinearity).

• In this multiple regression with two independent variables, the coefficients β1 and β2

are:

β1 ̸= the change in y for a 1-unit change in x1, with x2 held constant.

β2 ̸= the change in y for a 1-unit change in x2, with x1 held constant.

• The variances (and standard errors) of the regression coefficients β̂j are inflated.

This means that Var(β̂j) is too large.

• The magnitude of β̂j may differ from what we expect.

• The signs of β̂j may be opposite of what we expect.

• Adding or removing any of the x variables may produce large changes in the values or
signs of β̂j.

• Sometimes, removing a single data point can cause large changes in the estimated
values or signs of β̂j.

• In some cases, the overall F -statistic (from the ANOVA table) may be significant, while
the individual t-statistics for most explanatory variables are not significant.
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Theorem 1.8.1.2 (Multicollinearity Test-Variance Inflation Factor: VIF). Naively, we can
calculate the correlation coefficient (r) for each pair of the x variables. If any of the r values
is significantly different from zero, then the independent variables involved may be collinear.
Recall that r =

cov(xi,xj)

σiσj
. We can obtain r values by covariance matrix in Excel. A more

rigorous procedure to test for multicollinearity is to use the Variance Inflation Factor (VIF),
defined as:

VIFj =
1

1−R2
j

where R2
j is the R2 from the regression of the j-th independent variable on all the other

independent variables.

• If VIF ≈ 1, there is no multicollinearity.

• If VIF > 5, it is considered too high. For instance, VIF = 8 means that Var(β̂j) is 8
times what it would be if there were no collinearity.

For the regression model:

y = β0 + β1x1 + β2x2 + β3x3 + u,

compute R2
1, R

2
2, R

2
3 from the auxiliary regressions:

x1 = α0 + α1x2 + α2x3 + ε

x2 = α0 + α1x1 + α2x3 + ε

x3 = α0 + α1x1 + α2x2 + ε

Then compute:

VIF1 =
1

1−R2
1

, VIF2 =
1

1−R2
2

, VIF3 =
1

1−R2
3
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Proposition 1.8.1.3 (Solutions for Multicollinearity).

• Drop the variables causing the problem.

– If using a large number of x variables, a stepwise regression procedure could be
used to determine which variable(s) to drop.

– Removing collinear x variables is the simplest method of solving the multicollinear-
ity problem.

• If all the x variables are retained, then avoid making inferences on the individual β
parameters.

• If collinearity exists, we can still make inferences on the entire regression model if
the F -statistic in the ANOVA table shows that the model is significant. Individual
inferences (significance on each explanatory variable is based on the t-statistic) are not
reliable.

• Re-code the form of the explanatory variables. For example, if x1 and x2 are
collinear, you might try using x1 and the ratio x2/x1 instead.

• Try Ridge Regression, which is an alternative estimation procedure to OLS. Ridge
Regression is beyond the scope of MGEC11; it is left for the students to explore.
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1.9 Linear probability Model and Logistic Model

Definition 1.9.1 (Linear Probability Model: LPM). A multiple linear regression model
with a binary dependent variable is called a Linear Probability Model (LPM). LPM
has wide applications in the financial institutions and marketing. Loan approvals and mail
responses are typical examples of LPM. For example,

• What factors determine if a loan application is approved (or successful)?

– y = 1 if a loan is approved, 0 otherwise

• What factors determine if a bank customer is profitable?

– y = 1 if a customer is profitable, 0 otherwise

• What factors determine if the voters are in favour of a new policy?

– y = 1 if a voter is in favour, 0 otherwise

• What factors determine if the voters are in favour of voting this candidate?

– y = 1 if a voter is for the candidate, 0 otherwise

• What factors determine if a company pays dividends?

– y = 1 if a company pays dividend, 0 otherwise.

Example 1. Loan application using 5 explanatory variables.
Consider a Multiple Linear Regression Model with 5 independent variables:

y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + u

where y is a binary variable,

y =

{
1, if success

0, otherwise

x1 = Income ($)
x2 = Down payment ($) Quantitative (continuous) variables

x3 = Age (years)

x4 = Gender

x5 = Ethnicity Binary variables

To estimate the above model, we select a random sample of size n and use multiple
regression to estimate parameters.
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Definition 1.9.2 (Logit Regression). Consider a Linear Probability Model (LPM) with
k independent variables:

y = β0 + β1x1 + β2x2 + · · ·+ βkxk + u

where y is a binary variable,

y =

{
1, if success

0, otherwise

The OLS estimated regression equation based on sample data is

ŷ = β̂0 + β̂1x1 + β̂2x2 + · · ·+ β̂kxk

The estimated value ŷ is the estimated probability of a success.
Since LPM has the drawbacks as stated in Example 2, we propose a model as follows:
Let p be a function such that

p =
eβ0+β1x1+β2x2+···+βkxk

1 + eβ0+β1x1+β2x2+···+βkxk
.

Clearly, 0 ≤ p ≤ 1.
Then

1− p =
1

1 + eβ0+β1x1+β2x2+···+βkxk
, and

p

1− p
= eβ0+β1x1+β2x2+···+βkxk .

Taking the log, we have

ln

(
p

1− p

)
= β0 + β1x1 + β2x2 + · · ·+ βkxk.

This is called the Logit model (or Logistic model), where:

p = P (success)

1− p = P (not a success) = P (failure)
p

1− p
= odds ratio

ln

(
p

1− p

)
= natural log of the odds ratio

Note that the “odds ratio” is P (success)
P (failure)

. An odds ratio of 3 means that there is a 3-to-1
chance of success.
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