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1 Fields and Ideals

1.1 Axioms of a Field

Axiom 1.1.1 (Field). A field, denoted F, is a set which has two binary operators

+F (addition) and ×F (multiplication)

such that if a, b ∈ F, then

(a) a+F b ∈ F (closed under addition)

(b) a×F b ∈ F (closed under multiplication)

The set must satisfy the following rules:

1. ∃ 0F such that 0F +F a = a for any a ∈ F (the additive identity exists)

2. ∀ a ∈ F, ∃ − a ∈ F such that (−a) +F a = 0F (the additive inverse exists)

3. ∀ a, b, c ∈ F, a+F (b+F c) = (a+F b) +F c (Associative with addition)

4. ∀ a, b ∈ F, a+F b = b+F a (Commutative with addition)

5. ∃ 1F such that 1F ×F a = a for all a ∈ F (the multiplicative identity exists)

6. ∀ a ∈ F \ {0F}, ∃ a−1 ∈ F such that a−1 ×F a = 1F (the multiplicative inverse exists)

7. ∀ a, b, c ∈ F, a×F (b×F c) = (a×F b)×F c (Associative with multiplication)

8. ∀ a, b ∈ F, a×F b = b×F a (Commutative with multiplication)

9. ∀ a, b, c ∈ F, a×F (b+F c) = a×F b+F a×F c (Distributes over addition)

Remarks 1.1.1.0.1. Two common fields are C,Q and R. Also, two common nonexinclude
N and Z. Since for naturals, AF4. is not satisfied; for integers, AF5. is not satisfied. Further-
more, the order of the axioms matters.

p. 3



MATB24: Eric Wu 1 FIELDS AND IDEALS

Definition 1.1.2 (modulo n). Let n be an integer such that n ≥ 2 ∧ k ∈ Z. Then,

k = qn+ r

where 0 ≤ r < n ∧ q ∈ Z. Now we define modulo by an integer n,

kmodn = r.

I.e., we define the integer remainder of k divided by n.

Ex.

i. 5mod 7 = 5.

ii. −5mod 7 = 2 ∵ −5 = (−1)7 + 2.

iii. 12mod 4 = 0.

Remarks 1.1.2.0.1 (mod and long division). Let a ∈ Z+ be arbitrary. Consider an integer
divsor d, quotient q and remainder r such that

a = qd+ r.

Then, amod d = r.

Ex. Compute 47mod 3 by long division.

Solution. Note that 3 ))47
15

2
15
17
3
. Thus, 47mod 3 = 2. ■

Remarks 1.1.2.0.2 (Extended long division and mod for negative numbers). Let k be a
negative integer. To find q and r s.t. k = qn+r∧0 ≤ r < n we run the followings algorithm:

1. Apply long division to |k| /n s.t. Q is the quotient and R is the remainder.

2. If R = 0, then

(a) q = −Q

(b) r = R

3. If R ̸= 0, then

(a) q = −(Q+ 1)

(b) r = n−R.

p. 4
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Ex. Compute −56mod 3.

Solution. Consider 3 ))56
18

2
24
26
3
. By remark 1.1.4.0.2,

−56/3 = −(18 + 1)3 + 1 =⇒ −56mod 3 = 1.

Or, note that

R = 2 =⇒ r = n−R = 3− 2 = 1 =⇒ −56mod 3 = 1.

■

Definition 1.1.3 (Congruent Modulo). Let n ≥ 2 be a fixed integer. Then, two integers
m1 and m2 are congruent modulo, denoted

m1
∼= m2 (modn) ⇐⇒ m1 −m2 = kn s.t. k ∈ Z.

The integer n is called the modulus of the congruence.

Remarks 1.1.3.0.1 (congruence and remainder). Let a, b ∈ Z. Then,

a ∼= b (modn) ⇐⇒ the remainder of a/n = b/n.

Proposition 1.1.3.1 (Properties of congruent modulo - equivalent class).

1. A ∼= A (Reflexivity)

2. A ∼= B =⇒ B ∼= A (Symmetry)

3. A ∼= B ∧B ∼= C =⇒ A ∼= C (Transitivity)

Definition 1.1.4 (Integers Modular n (Zn)). Integers modulo n,Zn is the set {0, . . . , n− 1}
with the two operators +modn := ⊕ and ×modn := ⊙. Let a, b ∈ Zn, then

a⊕ b = (a+ b)modn, a⊙ b = (ab)modn.

p. 5
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Proposition 1.1.4.1 (properties of modular arithmetic). Let a, b ∈ Z.

1.

((amodn) + (bmodn))modn = (a+ (bmodn))modn

= ((amodn) + b)modn

= (a+ b)modn.

2.

((amodn)× (bmodn))modn = (a× (bmodn))modn

= ((amodn)× b)modn

= (a× b)modn.

Proof. Trivial, the idea is to define

a = q1n+ r1; b = q2n+ r2, r1 + r2 = q3n+ r3; r1r2 = q4n+ r4.

And then apply definition repeatedly with algebraic rearangement of n with some Z coeffi-
cient. In particular, arithmetic equality = r3 and multiplicative equality = r4.

Theorem 1.1.4.2 (Properties of a Field). Let F be a field with ⊞F and ⊡F . Then, the
followings hold:

1. The additive identity 0F is unique.

2. The multiplicative identity 1F is unique.

3. For any a ∈ F, the additive inverse −a is unique.

4. For any a ∈ F such that a ̸= 0, the multiplicative inverse a−1 is unique.

5. Addition is cancellational; For any a, b, c ∈ F if a+F b = a+F c, then b = c.

6. Given a ̸= 0F, multiplication is cancellational;
For any a, b, c ∈ F if a×F b = a×F c, then b = c.

7. Addition is distributive over Multiplication.
(a+ b)c = ac+ bc.

8. If a, b ∈ F and a ∗ b = 0, then a = 0 or b = 0.

p. 6
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Ex. Show that Z6 is not a field.

Proof. Note that 3 ×mod 6 5 = 3 and 3 ×mod 6 1 = 3 thus the multiplicative identity is not
unique. Thus, Z6 is not a field.

Ex. Show that Zp is a field iff p is a prime.

Proof. First we show that p is not a prime =⇒ Zp is not a field. Sps p is not a prime.
Then, p is composite. Hence p = ab s.t. a, b ∈ Zp − {0, 1} .

Definition 1.1.5 (Subfield). Let S ⊆ F. Then, S is a subfield if S is a field.

Theorem 1.1.5.1 (Field Closure). Let S ⊆ F. Then, S is a subfield iff

1. S contains at least 2 elements.

2. ∀a, b ∈ S, a+ (−b) ∈ S. closed under additive inverse

3. ∀a, b ∈ S, b ̸= 0 =⇒ a× b−1 ∈ S closed under multiplicative inverse.

p. 7
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1.2 Rings, Commutative Rings, Integral Domains, Principal Ideal
Domains

Axiom 1.2.1 (Ring). A set R is a ring with
additive (+R) and multiplicative (×R) operators such that

(a) If a, b ∈ R, then a+R b ∈ R (Closed under addition)

(b) If a, b ∈ R, then a×R b ∈ R (Closed under multiplication)

1. ∃ 0R such that 0R +R a = a for all a ∈ R (The additive identity exists)

2. ∀ a ∈ R, −a ∈ R exists such that (−a) +R a = 0R (The additive inverse exists)

3. ∀ a, b, c ∈ R, a+R (b+R c) = (a+R b) +R c (Associative with addition)

4. ∀ a, b ∈ R, a+R b = b+R a (Commutative with addition)

5. ∃ 1R such that 1R ×R a = a for any a ∈ R (The multiplicative identity exists)

6. ∀ a, b, c ∈ R, a×R (b×R c) = (a×R b)×R c (Associative with multiplication)

7. ∀ a, b, c ∈ R, a×R (b+R c) = (a×R b) +R (a×R c) (Distributes over addition)

Definition 1.2.2 (Commutative ring). Let (R,×,+) be a ring. If the multiplication oper-
ator is commutative, then (R,×,+) is a commutative ring.

Definition 1.2.3 (Integral Domain (non-zero commutative ring)). Let (R,×,+) be a ring.
If the multiplication operator is non-zero, then (R,×,+) is an integral domain. Note: non-
zero operator means that a × b = 0 =⇒ a = 0 ∨ b = 0. This condition is equivalent to
multiplication being cancellational.

Definition 1.2.4 (Principal Ideal Domain). Let (R,×,+) be an integral domain. If every
ideal of R is a principal ideal, then (R,×,+) is a principal ideal domain.

Definition 1.2.5 (Field). Let (R,×,+) be a principal ideal domain. If

∀a ∈ R,∃a−1 s.t. a · a−1 = 1,

then (R,×,+) is a field.

p. 8
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1.3 Rings, Additive Subgroups, Ideals, Principal Ideals

Definition 1.3.1 (Additive Subgroup). Let (R,×,+) be a ring. Let S ⊆ R. Then, (S,+)
is an additive subgroup if

1. ∀a, b ∈ S, a+ b ∈ S

2. 0R ∈ S

3. ∀a ∈ S,∃ − a ∈ S s.t. a+R (−a) = 0

4. ∀a, b, c ∈ S, a+ (b+ c) = (a+ b) + c.

Definition 1.3.2 (Ideals). Let (R,×,+) be a ring. Then a subgroup (I,+) is a left ideal if

∀r ∈ R and x ∈ I, rx ∈ I.

Else, subgroup (I,+) is a right ideal if

∀r ∈ R and x ∈ I, xr ∈ I.

Remarks 1.3.2.0.1. Since we are dealing with commutative rings, we will refer to two sided
ideals as ideals.

Ex.Show that the even numbers form an ideal within the integers.

Solution. Let x ∈ {even numbers} and k ∈ Z. Then, x ∈ 2h s.t. h ∈ Z. Thus kx = k(2h) =
2(kh) ∈ {even numbers} . ■

Definition 1.3.3 (Polynomials over a field F). The set of polynomials over a field F, (F [x])
is the set of polynomials with coefficients from F. If p(x) ∈ F [x] , then

p(x) =
n∑

i=0

aix
i s.t. ai ∈ F,∀i.

p. 9
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Definition 1.3.4 (Generator for Ideal and principal ideal). Let (R,×,+) be a ring and
I ⊆ R be an ideal. Then, G ⊆ I is a generator for I, if

∀i ∈ I,∃g1, . . . , gn ∈ G and r1, . . . , rn ∈ R s.t. i =
n∑

i=1

rigi.

If ∃g ∈ I s.t. G = {g} is a generator, I is a principal ideal

Remarks 1.3.4.0.1 (We can equivalently define generator for ideal as follows). Let (R,×,+)
be a ring and I ⊆ R be an ideal. The G ⊆ I is a generation if

∀S ⊆ I, S is an ideal and S ̸= {0} =⇒ G ⊆ S.

Ex. Consider the set S ⊆ Z7 [x] s.t. if f ∈ S, then f(4) = 0. Show that S is an ideal
and that (x+ 3) generates S.

Theorem 1.3.4.1 (Fundemental Remainder Theorem). Let p(x) in F[x] be a nonconstant
polynomial such that p(a) = 0. Then there exists q(x) in F[x] such that

p(x) = (x+ (−a))(q(x))

Proof. Suppose f ∈ Z7 [x] and g ∈ S. Then g(4) = 0. Consider

(fg) (4) = f(4)g(4) = f(4)0 = 0.

Thus (fg) ∈ S. ? Let g ∈ Z7 [x] s.t. g (x) = 0,∀x. Thus, g(4) = 0. Thus, g ∈ S. ?
Now we show {(x+ 3)} is a generator. Let f ∈ S. Then, f(4) = 0.
By fundamental remainder theorem,

∃G ∈ Z7 [x] s.t. f(x) = (x+ (−4)) · g(x)
= (x+ 3) · g(x) as 3 is the additive inverse of 4 in Z7.

p. 10
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2 Vector Spaces

Axiom 2.0.1 (Vector Space). A vector space is a set V with two binary operations:

⊞ : V × V → V ⊡ : F× V → V

called vector addition and vector multiplication such that the following axioms hold:

AV1. ∀a, b ∈ V, a+ b ∈ V closed under addition.

AV2. ∀c ∈ F and a ∈ V, ca ∈ V closed under multiplication.

AV3. ⊞ is associative.

AV4. ⊞ is commutative.

AV5. There is an additive element 0⃗ ∈ V s.t.

0⃗⊞ x⃗ = x⃗

for all x⃗ ∈ V. We call 0⃗ the zero vector of V.

AV6. For each x⃗ ∈ V, there is an additive inverse x⃗′ ∈ V such that

x⃗⊞ x⃗′ = 0⃗.

AV7. For all x⃗ and y⃗ and c ∈ F, scaling by c distributes over addition:

c⊡ (x⃗⊞ y⃗) = cx⃗⊞ cy⃗.

AV8. For all x⃗ ∈ V and c, d ∈ F, the field addition in F
distributes scalar multiplication in V :

(c+ d)⊡ x⃗ = (c⊡ x⃗)⊞ (d⊡ x⃗).

AV9. For all x⃗ ∈ V and c, d ∈ F,⊡ associates with scalar multiplication on F :

(cd)⊡ x⃗ = c⊡ (d⊡ x⃗).

AV10. For all x⃗ ∈ V, we have 1⊡ x⃗ = x⃗, the 1 is the multiplicative identity from F.

p. 11
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Definition 2.0.2 (Subspaces). Let (V,+,×) be a vector space. Then U ⊆ V is a subspace
if (U,+,×) is a vector space.

Theorem 2.0.2.1. Let V be a vector space. Then a subset U of V is a subspace if and only
if U satisfies

1. U ̸= ∅.

2. ∀u, v ∈ U, u+ v ∈ U

3. ∀c ∈ F and u ∈ U, cu ∈ U.

Proposition 2.0.2.2 (Subspace as Restriction). Let U be a non-empty subset of V. Then
the set U is a subspace of V over the field F if

1. a+ b ∈ U,∀a, b ∈ U

2. ca ∈ U,∀a ∈ F, a ∈ U

This is what is meant when we say that addition and scalar multiplication is restricted from
V to U

Proposition 2.0.2.3. If U is a subspace of V and W is a subspace of U , then W is a
subspace of V.

Definition 2.0.3 (Sums, Intersection and Unions). Let S1, . . . , Sn be a collection of sets.
Then,

1. S1 ∪ S2 ∪ · · · ∪ Sn =
⋃n

i=1 Si = {x s.t. ∃i ∈ {1, . . . , n} , x ∈ Si}

2. S1 ∩ S2 ∪ · · · ∩ Sn =
⋂n

i=1 Si = {x s.t. ∀i, x ∈ Si}

3. S1 + S2 + · · ·+ Sn =
∑n

i=1 Si = {x =
∑n

i=1 ai s.t. ai ∈ Si}

Remarks 2.0.3.0.1. When dealing with sets we are used to looking at the union and
intersections of the sets. For vector spaces we will look at the sum and intersection of
subspaces.

p. 12
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2.1 Linear Comb., Spans, L.I., Bases

Definition 2.1.1 (Linear Comb.). An element v⃗ ∈ V is a linear combination of vi,∀i ∈
[1, n] ∩ N if there exists a1, . . . , an ∈ F st

v⃗ =
n∑

i=1

aivi

Definition 2.1.2 (Span). Let V be a vector space and S be a subset of V . The span of a
set S is the set of all vectors in V that can be made using a linear combination of vectors in
S.

Span(S) := {all possible linear combinations of S} =

{
v ∈ V s.t. v =

n∑
i=1

aivi

}
.

Note, we use SpanF to emphasize the field on which the vector space is defined.

Proposition 2.1.2.1. Let V be a vector space and v1, · · · , vn ∈ V . Then the span{v1, · · · , vn}
is a subspace of V and is contained in all the subspaces of V that contain v1, · · · , vn.

Definition 2.1.3 (Generator set/ Spanning Sets). Let V be a vector space. If the span(v1, · · · , vk) =
V , we say that the set {v1, · · · , vk} generates the vector space V . The set {v1, · · · , vk} is a
generating set (also known as a spanning set) of V .

Remeber that {v1, . . . , vk} is a set of vectors; whereas Span({v1, . . . , vk}) is the set of all
possible L.C. of {v1, . . . , vk}. They are different.

Proposition 2.1.3.1. Let V be a vector space, W1 and W2 be subspaces of V . Let S1 be a
generating set of W1 and S2 be a generating set of S2. Then S1 ∪ S2 is a generating set of
W1 +W2.

Definition 2.1.4 (linearly independent). Let V be a vector space. Then a set of vector
v1, . . . , vk ∈ V are linearly independent iff

∀a ∈ F, ∀v ∈ V,

n∑
i=1

aivi = 0

This is equivalent to saying that for any vi /∈ Span({v1, . . . , vk})∀i, if ∃i s.t. vi ∈ Span({v1, . . . , vk})
then the vectors v1, . . . , vk are linearly dependent.

p. 13
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Definition 2.1.5 (basis). A set S is a basis of V if S is a set of linearly independent vectors
that generates V .

Proposition 2.1.5.1. Suppose {v1, . . . , vn} is a basis for V. Then, for arbitrary v ∈ V, !
scalars a1, . . . , ak ∈ F s.t.

v = a1vn + · · ·+ anvn.

Definition 2.1.6 (dimension). Let V be a vector space such that {v1, . . . , vn} is a basis for
V. Then, the dimension of V,

dim(V ) = |{v1, . . . , vn}| = n.

Definition 2.1.7 (cardinality of a set). Let S be a set. Then |S| is the cardinality of the
set S s.t.

|S| = the number of elements in S.

Definition 2.1.8 (Coordinate Vectors). Let V be a vector space and β = {v1, . . . , vn} be a
basis for V, the scalars a1, . . . , an that satisfies

v = a1v1 + · · ·+ anvn

are called the coordinate of v in this basis β. The coordinate vector is denoted

[v]β =

a1...
an

 ∈ F1×n.

Ex. The following vectors form a basis for the vector space Fn×1.
1
0
...
0

 ,


0
1
...
0

 , . . . ,


0
...
0
1



Proof. Let v ∈ Fn. Then v =

a1...
an

 = a1e1 + · · ·+ anen.

Thus, v ∈ Span




1
0
...
0

 ,


0
1
...
0

 , . . . ,


0
...
0
1



. #excercise: show independence.

p. 14
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Proposition 2.1.8.1. Suppose V is a finite vector space. Then,

• V has a basis which can be written and all bases of V has the same cardinality.

• Every generating set contains a basis

• For all linearly independent set, there is a basis such that the LI set is a subset of the
basis

• All subspaces have a basis.

Definition 2.1.9 (Dimension II.). The cardinality of the basis for a vector space is the
dimension of the vector space, denoted dim(V ).

Proposition 2.1.9.1. If U1 and U2 are finite dimensional subspaces of V, then

dim(U1 + U2) + dim(U1 ∩ U2) = dim(U1) + dim(U2).

Proof. Outline: 1. create a basis for U1 ∩ U2(α). 2. Extend said basis to create a basis for
U1(β1), U2(β2). 3. β1 ∪ β2 is a basis for U1 + U2 (But how?)

Ex. Let α = (1, 1, 1, 0)T , β = (0, 1, 1, 1)T , γ = (1, 0, 0, 1)T . We can see that α, β, γ ∈ R4

and α, β, γ ∈ (Z2)
4. Show that α, β, γ are linearly independent in R4, but linearly dependent

in (Z2)
4.

Proof. Consider a linear combination of α, β, γ equal to zero.

x1(1, 1, 1, 0)
T + x2(0, 1, 1, 1)

T + x3(1, 0, 0, 1)
T = 0 =⇒


x1 + x3 = 0

x1 + x2 = 0

x1 + x2 = 0

x2 + x3 = 0

For, Rn 
1 0 1 0
1 1 0 0
1 1 0 0
0 1 1 0


For (Z2)

4 
1 0 1 0
1 1 0 0
1 1 0 0
0 1 1 0


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2.2 Direct Sum

Definition 2.2.1 (Direct Sum). The sum V1 + · · ·+Vn is a direct sum if the only choices of
vectors v1 ∈ V1, v2 ∈ V2, . . . , vn ∈ Vn s.t.

v1 + · · ·+ vn = 0

is v1 = · · · = vn = 0. We denote the direct sum as

V1 ⊕ · · · ⊕ Vn

Proposition 2.2.1.1. Let V be a finite dimension vector space. Then V = V1 ⊕ · · · ⊕ Vn iff

1. V = V1 + . . . Vn.

2. ∀i, j ∈ {1, . . . , n} s.t. i ̸= j, Vi ∩ Vj = {0} .

3. dim(V ) = dim(V1) + · · ·+ dim(Vn)

Definition 2.2.2 (Ordered Basis). A basis listed in a specific order is called an ordered
basis.

Proposition 2.2.2.1. Suppose that V = V1⊕· · ·⊕ is finite dimensional and βi = {vi1, . . . , vini
}

is a basis forall Vi. Then, the ordered set

S = {v11, . . . , v1n1 , v21, . . . , v2n2 , . . . , vn1, . . . , vnnn}

obtained by concatenating β1, . . . , βn is a basis of V.

p. 16
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3 Linear Transformation

Definition 3.0.1. Let V and W be vector spaces defined over the field F. Then, T : V → W
is a linear transformation if T is a function such that

1. T (x+ y) = T (x) + T (y),∀x, y ∈ V

2. T (cx) = cT (x), ∀c ∈ F, x ∈ V.

Definition 3.0.2 (L(V,W )). The set L(V,W ) is the set of all linear transformations from
V to W.

Definition 3.0.3 (linear operator). A L.T., T : V → V is called a linear operator.

Definition 3.0.4 (L(V )). The set L(V ) is the set of all linear operators of V.

Ex. Suppose T : R → R and T is a linear transformation. What can T be?

Solution. First observe that T (cx) = cT (x);T (x) = xT (1) = kx s.t. k ∈ R.
Thus, T (x) = kx, k ∈ R.T (x) = kx+ 0, i.e., linear function s.t. y−intercept equals to 0.

Remarks 3.0.4.0.1. Linear Function are a very restricted set of function. But they have
very nice properties.

■

Ex. Let V = W = R. Find the linear operations T : V → W.

Solution. T (x) = xT (1) = T (1)x. Then, T (x) is a line through the origin. ■

Exercise. Find eigenvalue of T, for T ∈ L(R).

Solution. T (1). ■

p. 17
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Ex. Quantum Mechanics Ex.

In quantum analysis, vector α ∈ V are called quantum bit or bit for short. Let A =

(
0 1
1 0

)
.

The matrix A is known as the bit flip operation. Let α =

(
x
y

)
∈ V.

Define TA (α) = Aα, i.e.,

TA

[
x
y

]
= A

[
x
y

]
=

[
0 1
1 0

] [
x
y

]
=

[
y
x

]

If we consider out standard basis e1 =

(
1
0

)
and e2 =

(
0
1

)
, we can notice that

TA (e1) =

[
0 1
1 0

] [
1
0

]
=

[
0
1

]
= e2 and TA (e2) =

[
0 1
1 0

] [
0
1

]
=

[
1
0

]
= e1.

Definition 3.0.5 (Identity Operator). The function I : V → V defined by I(α) = α, ∀α ∈ V
is called the identity operator

Definition 3.0.6 (Zero Operator). The function O : V → V defined by O(α) = 0⃗,∀α ∈ V
is called the zero operator

Ex. Let V be the space of all continuous functions f : R → R. Let T : V → V such that

(Tf) (x) =

∫ x

a

f(t)dt.

Then, T is a linear operator called integration operator.

Proof. Let f, g ∈ V, c ∈ R. WTS T (cf + g) = cT (f) + T (g). Let x ∈ R be arbitrary. Then,

brT (f + g) (x) = T (f + g) (f)

=

∫ x

a

(f + g) (t)dt

=

∫ x

a

f(t) + g(t)dt

=

∫ x

a

f(x)dt+

∫ x

a

g(t)dt

= (Tf) (x) + (Tg) (x) proof of scaling left as exercise.
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Ex. Let A be a fixed m× n matrix with entries in a field F. Let TA : Fn×1 → Fm×1 s.t.

TA(x) = Ax,

where A is a real m× n matrix and X ∈ Fn×1. Show that TA is a linear transformation.

Proof. Let c ∈ F and X, Y ∈ Fn×1.

TA(X + Y ) = A(X + Y )

= AX + AY

= TA(x) + TA(Y ).

COnfirm if n× 1 is correct.

Ex. Rotations and Reflections in R2.

1. T := reflection in a line through the origin.

T (x, y) = (y, x).

Check TA, where A =

[
0 1
1 0

]
. Then,

TA

[
x
y

]
=

[
y
x

]
.

2. Let 0 ≤ θ < 2π.T := a counterclockwise rotation through the angle θ.

# fill up the notes!!

Remarks 3.0.6.0.1 (A is a orthogonal matrix). Let AT := transpose of A. Then,

A =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
=⇒ AT =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
.

Then, ATA =

[
1 0
0 1

]
.
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Exercise. Let V be the space of complex polynomials f : C → C given by

f(z) = a0 + a1z + · · ·+ anz
n, where ai ∈ C,∀i.

Let Df : C → C be the polynomial

(Df)(z) = a1 + 2a2z + · · ·+ nanz
n−1

Then D : V → V is a linear operator called the differentiation operator.
Show that (Df)(x) is a linear operator. Exercise.

Let α ∈ Cn be a non-zero vector. Then

Pα(v) =
⟨v, α⟩
⟨α, α⟩

α

is called the projection of v onto α. Show that Pα(v) is a linear transformation.
# fill up notes!!!!

Proposition 3.0.6.1 (Linear transformations ”preserve“ the additive identity). If T is a
linear transformation, then T (0v) = 0w.

Proof. Observe that

0v = 0v + 0v

=⇒ T (0v) = T (0v + 0v)

=⇒ T (0v) = T (0v) + T (0v) as T is linear

=⇒ T (0v) + a = T (0v) + T (0v) + a for a := the additive inverse of T (0v)

=⇒ T (0v) + a = T (0v) + (T (0v) + a)

=⇒ 0w = T (0v) + 0w

=⇒ 0w = T (0v)

Exercise. Similar to fields and vector spaces, linear transformations have a lot of nice
properties. Prove the following:

1. The set L(V,W ) forms a vector space.

2. Let v ∈ V and T ∈ L(V,W ). Then −T (v) = T (−v) = T ((−1)v) = (−1)T (v).

3. Let S ∈ L(V,W ) and T ∈ L(U, V ). Then TS := T ◦ S is in L(U,W ).
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Theorem 3.0.6.2 (ordered basis). Let {α1, . . . , αn} be an ordered basis for V , and let
{β1, . . . , βn} be vectors in W . Then exactly one linear transformation T : V → W exists
such that:

T (αj) = βj for j = 1, 2, . . . , n.

This theorem is also useful in constructing linear transformations in the following man-
ner:
Suppose you have an ordered basis {α1, . . . , αn} and you need a linear transformation T such
that Tαj = βj, for j = 1, 2, . . . , n. By applying this theorem, we can produce such a T .

Ex. Let us, once again, consider our rotation matrix, using our standard basis :

e1 =

(
1
0

)
and e2 =

(
0
1

)
.

Recall that A =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.

Solution. TA(e1) =

(
cos(θ)
sin(θ)

)
= cos(θ)e1+sin(θ)e2. And TA(e2) = · · · = − sin(θ)e1+cos(θ)e2.

Note that
A =

[
[TA(e1)]{e1,e2} | [TA(e2)]{e1,e2}

]
.

■

Definition 3.0.7 (nullspace, nullity, range, rank). Let T : V → W be a linear transforma-
tion.

• The nullspace of T is the set {v ∈ V | T (v) = 0W}.

• The nullity of T is defined as nullity(T ) := dim(nullspace(T )).

• The range of T , denoted range(T ), is the set {w ∈ W | w = T (v) for some v ∈ V }.

• The rank of T is defined as rank(T ) := dim(range(T )).
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Exercise. Show that nummspace of T is a subspace of V, while the range of T is a subspace
of W.

Theorem 3.0.7.1 (Rank/Nulity Theorem). For T : V → W,

rank(T ) + nullity(T ) = dim(V )

Exercise. Let T : Fn → Fn be a swap operator.

T (x1, . . . , xi−1, xi, xi+1, . . . , xj−1, xj, xj+1, . . . , xn) = (x1, . . . , xi−1, xj, xi+1, . . . , xj−1, xi, xj+1, . . . , xn)

Show that T is a linear operator. Compute the rank(T ) and nullity(T ) and verify the
rank-nullity theorem.

Remarks 3.0.7.1.1 (Permutation Notation.). In abstract algebra, and later in the course,
we often construct permutations using the following notation:

(ijk) means that the ith entry moves to the jth entry, the jth entry moves to the kth
entry, and the kth entry moves to the ith entry.

Using this notation, (ij) denotes the swap operator T from the previous ex.

This notation is also sometimes referred to as cycle decomposition.
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3.1 Algebra of Linear Transformations

Theorem 3.1.0.1. Let V and W be vector spaces. Suppose S, T : V → W are linear
transformations. Any linear combination of S and T is also a linear transformation mapping
V to W . That is,

∀a, b ∈ F, aS + bT : V → W.

Let v ∈ V, then
(aS + bT ) (v) = aS(v) + bT (v).

Remark: thus there are many different linear transformation from a vector space V to a
vector space W.

Definition 3.1.1. The set L(V,W ) is the set of all linear transformations from V to W .
L(V,W ) is itself a vector space. The set of linear operators that can act on the vector space
V are denoted L(V ) := L(V, V ). The elements of L(v) can be multiplied by composition:
Let S, T ∈ L(V ). Then,

ST ∈ L(V ) s.t. ST (V ) = S ◦ T (v) = S(T (v)).

Ex. Let A,B ∈ Cm×m. Then, ∀X ∈ Cn×1, TBTA = TBA.
Let x ∈ Cn×1. Then,

TBTA(x) = TB(TA(x))

= TB(Ax)

= B(Ax)

= (BA)x

= TBA(X)

Recall that AB ̸= BA in general. Thus we conclude that

TATB ̸= TBTA.

The multiplication of linear operator (element of L(V )) is not commutative.
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Ex m = n = 2. The standard basis for F2×2, Let x ∈ F2×2. Then,

X =

[
a b
c d

]
= a

[
1 0
0 0

]
+ b

[
0 1
0 0

]
+ c

[
0 0
1 0

]
+ d

[
0 0
0 1

]
.

Thus, x ∈ Span

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
.

Note that ∀x ∈ such span, x = 0 ⇐⇒ a, b, c, d = 0. Thus, this set is a basis.
Suggested Exercise: Standard Basis for Fm×n

∀ 1 ≤ p ≤ m and 1 ≤ q ≤ n, let Ep,q be the matrix with a 1 in the entry ep,q and 0’s in all
other entries.

Show that the following set is a basis for Fm×n:

{Ep,q | 1 ≤ p ≤ m, 1 ≤ q ≤ n}

Theorem 3.1.1.1 (L(V,W ) dimension). Let dim(V ) = n, dim(W ) = m s.t. n,m < ∞,
then

dim(L(V,W )) = mn.

Proof. Let β = {α1, . . . , αn} and β′ = {β1, . . . , βm} be ordered bases for V and W respec-
tively. For each pair (p, q) with 1 ≤ p ≤ m, 1 ≤ q ≤ n, we define a map Epq ∈ L(V,W )
by

Epq(αi) =

{
βp, if i = q

0, if i ̸= q

Then,

Epq(αi) = γpqβj, where γpq =

{
1, i = q

0, i ̸= q.

From which it follows that

{Epq|1 ≤ p ≤ m, 1 ≤ q ≤ n} forms a basis for L(V,W ).

Thus,

T (v) = T (
n∑

i=1

aiαi) =
n∑

i=1

aiT (αi).

Then,

∀i, T (αi) =
m∑
j=1

bjβj =
m∑
i=1

bjE
ij(αi) =⇒ T (v) =

n∑
i=1

ai(
m∑
j=1

bjβj)
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Definition 3.1.2 (Invertability). T ∈ L(V,W ) is invertable if and only if

1. T is one-to-one, i.e., Tα = Tβ =⇒ α = β.

2. T is onto. ∀w ∈ W,∃v ∈ V s.t. T (v) = w.

Proposition 3.1.2.1 (equal dimensional invertability). Let T ∈ L(V,W ). If dim(V ) =
dim(W ) < ∞, then T is invertable iff T is one-to-one or T is onto.

Remarks 3.1.2.1.1. This does not hold for infinite dimensional spaces. Consider the fol-
lowing counter ex. Let A =

∑∞
i=1E

i+1,i, B =
∑∞

i=1 E
i,i+1. Then

BA =
∞∑
i=1

Ei,i, whereas AB =
∞∑
i=2

Ei,i.

Use the definition of matrix multiplication to verify this counter ex. Note that the left inverse
exists for A but no right inverse exists. . . .
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3.2 Isomorphisms and Coordinates

Definition 3.2.1 (Isomorphisms). An invertible map T ∈ L(V,W ) is also called an isomor-
phism. If such a map exists, we say V is isomorphic to W or V and W are isomorphic.
Intuitively, isomorphic vector spaces are “the same up to relabeling”.

Definition 3.2.2 (Standard basis for Fn). The set {e1, . . . , en} is the “standard basis” for
Fn, where

e1 = (1, 0, . . . , 0)

e2 = (0, 1, 0, . . . , 0)

...

en = (0, . . . , 0, 1).

Theorem 3.2.2.1. If V is a F vector space and dim(V ) = n, then V is isomorphic to Fn.

Proof. Suppose {α1, . . . , αn} is an ordered basis for V. Then define T ∈ L(V,Fn) by Tαi =
ei,∀i, where {e1, . . . , en} is the standard basis for Fn. Let v ∈ V. Then,

T (v) = T (c1α1 + · · ·+ cnαn)

= c1T (α1) + · · ·+ cnT (αn)

= c1e1 + · · ·+ cnen

= (c1, . . . , cn).

Exercise. Show that T from the previous exis an invertible linear transformation.
Suppose V and W are both finite dimensional F vector spaces such that dim(V ) = dim(W ).
Show that V and W are isomorphic.
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3.3 Matrix Representations of Linear Transformations

Definition 3.3.1 (Coordinate Vectors). Let β = {α1, . . . , αn} be an ordered basis for V and
a vector α ∈ V , we let [α]β denote the coordinates of α relative to β.

As α = c1α1 + c2α2 + . . .+ cnαn, where ci ∈ F are uniquely determined, then

[α]β =

c1...
cn

 .

Definition 3.3.2 (Matrix representation). Let V and W be vector spaces, with dim(V ) = n
and dim(W ) = m. Let β be an ordered basis for V and β′ be an ordered basis for W . Then
∀T ∈ L(V,W ), there is a unique m× n matrix A such that

[T (α)]β′ = A[α]β, ∀α ∈ V

The matrix A is called the matrix of T relative to the ordered bases β, β′. Note that in
the case where w = v and β = β′, we use the notation [T ]β.

Proof. Let A := (Aij) ∈ Fm×n, where the scalars Aij are obtained by

T (αj) =
n∑

i=1

Aijβi,∀j ∈ {1, . . . , n} ,

where β = {α1, . . . , αn} and β′ = {β1, . . . , βm} , i.e.,

[Tαj]
′
β =

A1j
...

Amj

 .

Now, let α =
∑n

j=1 cjαj.
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Then,

T (α) = T (
n∑

j=1

cjαj)

=
n∑

j=1

cjT (αj)

=
n∑

i=1

cj(
m∑
i=1

AijBi)

Thus,

[T (α)]′β =


∑n

j=1A1jcj
...∑n

j=1Amjcj

 = A [α]β .

Remarks 3.3.2.0.1. Note that the jth column of A is given by the coordinate, [T (αj)]β′

Ex. Let T : R2 → R be defined by T (x1, x2) = (0, x2). Then T is a (linear operator) on
R2. Let’s explore how the operator T acts on the standard basis: β = {e1, e2}.

Te1 = T (1, 0) = (1, 0) = 1e1 + 0e2 =⇒ [Te1]e1,e2 =

[
0
0

]
.

Similarly, Te2 =

[
0
1

]
. Note [

0 0
0 1

] [
x1

x2

]
=

[
0
x2

]
So

[α]β =

[
x1

x2

]
.

And

[T (α)]β =

[
0
x2

]
.
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# insert three ex.

Definition 3.3.3 (Matrix Representation). Given a linear operator T : V → V and a
ordered basis β = {α1, . . . , αn} for V , we can get the matrix representation [T ]β for T
relative to β, by:

[T ]β =
[
[Tα1]β , . . . , [Tαn]β

]
Question: Given T ∈ L(V ), and order bases β, β′, how are [T ]β and [T ]′β related.

Definition 3.3.4 (Change of Basis). Let β = {α1, ..., αn} and β′ = {α′
1, ..., α

′
n} be an ordered

basis for V . Suppose T ∈ L(V ). Let P = [P1, . . . , Pn] be the n × n matrix with columns
Pj =

[
α′
j

]
β

∀ 1 ≤ j ≤ n. Then

[T ]β′ = P−1[T ]βP

Definition 3.3.5. The matrix P is the change of basis matrix from β′ to β.

P−1 = [P ′
1, . . . , P

′
n] wherePj =

[
α′
j

]
β

Ex. Let T : R2 → R2 be given by T (x1, x2) = (0, x2). Let β = {e1, e2}. Then

[T ]β =

[
0 0
0 1

]
.

Let β′ = {α1, α2}, where α1 = (1, 1) and α2 = (2, 1). Solve for [T ]β′ using a change of
basis matrix.

Solution. Note that

α1 = (1, 1) =⇒ [α1]β =

[
1
1

]
α2 = (2, 1) =⇒ [α2]β =

[
2
1

]
Thus,

P =

[
1 2
1 1

]
.

Note that by Gaussian Elimination, we can get

P−1 =

[
−1 2
1 −1

]
.

Thus,

[T ]′β =

[
−1 2
1 −1

] [
0 0
0 1

] [
1 2
1 1

]
=

[
2 2
−1 −1

]
.

■

Definition 3.3.6 (Similarity). Let A,B ∈ Fn×n. Then B is similar to A if an invertable
matrix P ∈ Fn×n exists such that A = PBP−1
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Ex. Let X =

[
0 1
1 0

]
, Z =

[
1 0
0 −1

]
be matrix representation in the standard basis, so{

Xe1 = e2

Xe2 = e1

{
Ze1 = e1

Ze2 = −e2
.

Show that X and Z are similar.

Solution. Let P =

[
1/
√
2 1/

√
2

1/
√
2 −1/

√
2

]
. Then,

P−1ZP =

[
1/
√
2 1/

√
2

1/
√
2 −1/

√
2

] [
1 0
0 −1

] [
1/
√
2 1/

√
2

1/
√
2 −1/

√
2

]
=

1

2

[
1 1
1 −1

] [
1 0
0 −1

] [
1 1
1 −1

]
=

[
0 1
1 0

]
.

■

Remarks 3.3.6.0.1 (Similar Matrices Represent the same linear transformations in different
bases.). Let β = {e1, e2} and β′ = {α1, α2}, where

α1 =

(
1√
2
,
1√
2

)
, α2 =

(
1√
2
,− 1√

2

)
.

Note that Xα1 = α1 and Xα1 = α1. In this ex, P is the change of basis matrix from β′

to β, and
X = P−1ZP.

This means that X and Z are matrices that represent the same transformation, but in
different bases.

Theorem 3.3.6.1 (Properties of Determinant). Let M ∈ Mn×n(R). Suppose that M ′ is
obtained from M by row operation.

Scale a row. If M
(λRi→Ri)−−−−−−→ M ′ then det(M ′) = λ det(M).

Exchange Ri and Rj. If M
Ri↔Rj−−−−→ M ′ then det(M ′) = − det(M).

Add a multiple of a row. If M
(Rj+λRi→Rj)−−−−−−−−→ M ′ then det(M ′) = det(M).

Note: These properties of det are sometimes called “row operation invariance”. This
is not quite right, because the determinant does change when applying row operations.
However, the determinant changes in simple and predictable ways.

Definition 3.3.7 (Submatrices - Minors). The i− j−minor of M ∈ Mn×n(R) is the matrix
Mij obtained by deleting row i and column j from M.

Theorem 3.3.7.1 (Recursive Formula for det). If M = [mij] ∈ Mn×n(R) and 1 ≤ i ≤ n
then we define:

det(M) =
n∑

j=1

(−1)i+jmij det(Mij) =
n∑

i=1

(−1)i+jmij det(Mij)
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3.4 Linear Functionals

Definition 3.4.1 (Linear Functionals). Let V be a vector space over F. The linear trans-
formations, L(V,F) are called linear functionals.

Ex.(Trace) Let A = Ai,j ∈ Fn×n and define the trace of A by

trace(A) =
n∑

i=1

Aii.

Proof. As trace(A) ∈ F,Fn×n → F. Let c ∈ F and A,B ∈ Fn×n. Then,

trace(cA+B) =
n∑

i=1

(cA+B)ii by definition of trace

=
n∑

i=1

cAii +Bii by definition of matrix add/scaling

= c
n∑

i=1

Aii +
n∑

i=1

Bii as F is a field

= c trace(A) + trace(B) definition of trace

Thus, trace ∈ L(Fn×n,F), i.e., trace is a linear functional.

Ex. (Evaluation maps.)
Let V be the space of polynomial. Let t ∈ F. Show that

Lt(p) = p(t),∀p ∈ V.

defines a linear functional Lt ∈ L(V,F).

Proof. As p(t) ∈ F,∀p ∈ V, Lt(p) : V → F. Let c ∈ F and f, g ∈ V. Then,

Lt(cf + g) = (cf + g)(t)

= cf(t) + g(t)

= cLt(f) + Lt(g)

Thus, Lt ∈ L(V,F).

Remarks 3.4.1.0.1. Such a linear function is often called aa evaluation map because it
maps V to the field it is defined over by evaluating the functions at a given point.
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Ex. (Definite integration.) Let a, b ∈ R and V = C[a, b] (the set of continuous functions
f : [a, b] → R). Define

L(f) =

∫ b

a

f(t) dt

Then L is a linear functional on V.

Proof. Let f,G ∈ C[a, b] and c ∈ R. The output of a definite integral is a real number, by
calculus. Thus, L : C[a, b] → R. Then,

L(cf + g) =

∫ b

a

(cf + g)(t)dt

=

∫ b

a

cf(t) + g(t)dt

= c

∫ b

a

f(t)dt+

∫ b

a

g(t)dt

= cL(f) + L(g).

Thus, L ∈ L(c [a, b] ,R).
Definition 3.4.2 (Standard Inner Product for Cn). Let V = Cn and fix α ∈ Cn. Let inner
product ⟨·, ·⟩ : Cn × Cn → C be the standard inner product ;

given x = (x1, . . . , xn); y = (y1, . . . , dn) → ⟨x, y⟩ =
n∑

i=1

xiȳi

where ȳi is the complex conjugate of yi. Define fα : Cn → C by fα(β) = ⟨β, α⟩ for all β ∈ Cn.

Theorem 3.4.2.1.
fα ∈ L(Cn,C).

Proof. as ⟨·, ·⟩ : V × V → C, fα : Cn → C by definition. Let c ∈ C and x, y ∈ Cn. Then

fα = ⟨cx+ y, α⟩

=
n∑

i=1

(cx+ y)i(α
∗
i )

=
n∑

i=1

cxiα
∗
i + yiα

∗
i

= c
n∑

i=1

xiα
∗
i +

n∑
i=1

yiα
∗
i

= c⟨x, α⟩+ ⟨y, α⟩
= cfα(x) + fα(y).

Thus, fα ∈ L(Cn,C).
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Definition 3.4.3 (Standard Inner Product for Rn). Let V = Rn and fix α ∈ Rn. Let inner
product ⟨·, ·⟩ : Rn × Rn → R be the standard inner product (“dot product”);

Define T : Rn → R by T (x) = ⟨x, α⟩ for all x ∈ Rn.

Ex. Let α = (i, 1) ∈ C2, β = (b1, b2). Determine the explicit formula for fα(β). Note that

fα(b1, b2) = ⟨(b1, b2), (i, 1)⟩ = bi(i)
∗ + b2(1)

∗ = b1(−i) + b2.

Thus, fα(b1, b2) = b2 − b1i.

Theorem 3.4.3.1 (Riesz Representation Theorem). Every linear functional on Cn is of the
form T (x) = ⟨x, α⟩ for some α ∈ Cn, i.e., if f ∈ L(Cn,C), then

∃α s.t. f(v) = ⟨v, α⟩,∀v ∈ Cn.

Definition 3.4.4 (Annihilator). Let S be a subset of the vector space V over F. The anni-
hilator of S is the set

So = {T ∈ L(V,F) |T (v) = 0, ∀v ∈ S.}

Note that So is a subspace of L(V,F). Also note that when F = R,C we replace T with fα.

Definition 3.4.5 (Orthogonal Subspace). Let S be a nonempty subset of the vector space
Rn (or Cn) and ⟨·, ·⟩ be the corresponding standard inner product, then

S⊥ = {x ∈ V | ⟨x, y⟩ = 0, ∀ y ∈ S}.
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Ex. Let W = span{α1, α2, α3, α4} ⊂ R5, where
α1 = (2,−2, 3, 4,−1)

α2 = (−1, 1, 2, 5, 2)

α3 = (0, 0,−1,−2, 3)

α4 = (1,−1, 2, 3, 0)

Solve for W⊥.

Solution. Let x ∈ W⊥. Then, ⟨x,w⟩ = 0, ∀w ∈ w⊥. As w ∈ w⊥,

w = x1α1 + · · ·+ x4α4

=⇒ ⟨x|x1α1 + · · ·+ x4α4⟩ = 0

⇐⇒
n∑

i=1

xi⟨x|αi⟩ = 0

If ⟨x|αi⟩ = 0, ∀i, then ⟨x|w⟩ = 0. (Converse left as exercise).
As x ∈ W⊥, ⟨x|αi⟩ = 0,∀i. This means x is a solution to

⟨x|α1⟩ = 0
...

⟨x|α4⟩ = 0

Let x = (v1, . . . , v5) . Then, (v1, . . . , v5) s a solution to
2v1 − 2v2 + 3v3 + 4v4 − v5 = 0

−v1 + v2 + 2v3 + 5v4 + 2v5 = 0

−3v3 − 2v4 + 3v5 = 0

v1 − v2 + 2v3 + 3v4 = 0

Consider W = Span({v1, . . . , vn}) ⊆ Cn. Then,
x ∈ W⊥ ⇐⇒ x is a solution to 

⟨x|vn⟩ = 0

⟨x|vn⟩ = 0
...

⟨x|vn⟩ = 0.

■
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3.5 Error Correcting (Hamming Codes) and XOR Encryption

In classical computers all our information is stored in bits. These bits are either on 1 or off
0. We can represent a string of n bits as a vector (x1, x2, ..., xn) ∈ (Z2)

n .
In many situations, we would like to pass this information from one place to another.

For ex, a DVD player reads from a DVD, your Laptop receives data from the Wi-Fi router,
and so on. These situations can be represented as follows:

Alice has a piece of information and would like to pass it to Bob. She does so using the
following process:

Alice
endcode−−−−→ · sending−−−−→ · super−−−→ Bob.

Naive Solution. Let us first consider a straightforward error-correcting code to get a feel
for error-correcting codes.

The code works as follows. Say Alice would like to send 0, 1, 0, she would instead send
each bit in triplets. That is, she would send: 000, 111, 000.

Then, if Bob receives 010, 101, 000, Bob would know that at least one error has occurred
since numbers do not occur in triplets. Using a “majority vote” strategy for each triplet,
Bob would be able to fix the incorrect string to regain the original message 010.

As we can see, there are two benefits to this method:

1. Bob knows stuff happened.

2. Bob can fix it.

However, note the drawbacks:

1. Two errors in one triplet can lead to incorrect deductions

2. It requires one to send a lot of excess information

Consider Hamming codes which were developed in an attempt to deal with the issue:

1. Alice encodes to an error-resistant code

2. Alice sends the code

3. Bob receives the code

4. Bob decodes the message
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Definition 3.5.1 (Hamming Distance). Let v1 and v2 be two strings (over Zn
2 .) The Ham-

ming Distance between v1 and v2(d(v1, v2)) is the numbers of bits as we travel along the
string (vector) that are different.

In our ex, the 2nd and 5th entries of v1 = 0, 0, 0, 1, 1, 1, 0, 0, 0 and v2 = 0, 1, 0, 1, 0, 1, 0, 0, 0
are different, so their Hamming distance is 2.

It turns out that we can use vector addition to calculate the Hamming distance between
vectors in (Z2)

n.
If we add two vectors using Z2 addition component-wise, then the entries of the resulting

vector that are equal to 1 are exactly the entries that are different. Thus, the Hamming
distance is the number of 1s in the summed string.

For ex,
v1 + v2 = 0, 1, 0, 0, 1, 0, 0, 0, 0

So the Hamming distance between v1 and v2 is 2.

p. 36



MATB24: Eric Wu 3 LINEAR TRANSFORMATION

Definition 3.5.2 (Erro correcting code). An E-error correcting code is a code designed to
direct and fix a total of e errors.
If Alice sends Bob a message using an e-error correcting code, then the message can be
decoded if there are ≤ e errors.

In proceeding section, we explore a special type of Hamming code, the Hamming(7,4)
code. This is a 1-error correcting code.

Definition 3.5.3 (Hamming Codes). Let the parity of a string of bits v be d(v, 0),i.e., the
number of 1 in the string. Note that the sum of the the bits over Z2 in a string is 0 iff the
string has even parity, otherwise 1 with odd parity.
In illustration of Humming(7, 4) code with 4 bits, (x1, x2, x3, x4) :

Circle 1 Circle 3

Circle 2

x1

x2

x3 x4

p1

p2

p3

Location label
x1 L1 = (1, 1, 1)
x2 L2 = (1, 0, 1)
x3 L3 = (1, 1, 0)
x4 L4 = (0, 1, 1)
p1 L5 = (1, 0, 0)
p2 L6 = (0, 1, 0)
p3 L7 = (0, 0, 1)

Where for any Li = (l1, l2, l3), lj = 1 ⇐⇒ Li is in pj,∀j ∈ [1, 3] ∩ N and i ∈ [1, 4] ∩ N.
Also note that for any

pi = (ρ1, ρ2, ρ3), ρi = 1 ⇐⇒ the sum of all entries in the ith circle = 1.
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Ecoding the error resistant vector.
Consider G ∈ (Z2)

7×4 s.t.

G =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
| | | |
LT
1 LT

2 LT
3 LT

4

| | | |


.

Then, we have 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
| | | |
LT
1 LT

2 LT
3 LT

4

| | | |




x1

x2

x3

x4

 =



x1

x2

x3

x4

p1
p2
p3


Recieving the message. Suppose Bob receives the message m = (x′

1, . . . , p
′
3). Further

suppose that Bob uses the same VennDiagram as Alice. Let

H =
[
LT
1 LT

2 LT
3 LT

4 LT
5 LT

6 LT
7

]
.

Then,Hm = (c1, c2, c3)
T . In particular, shall any ci be non-zero, an error has occurred––because

Alice had ensured even parity within each circle. Assume only one error occurs. Then, a
quick check shows that the error occurs precisely at the location Li = (c1, c2, c3).

1. If i ∈ [1, 4] ∩ N. The vector (x1, . . . , x4)
T + ei would then be the corrected message

where ei is a standard basis.

2. if i > 4, an error occurred in one of the parity bits, thus the message is error-free and
irrelevant.

Note that for k−tuple, we have 2k binary numbers. In particular, with k parity bits and
(0, 0, 0), we in total have 2k − k − 1 locations to store information.
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3.6 XOR Encryption

Theorem 3.6.0.1. Let x, y ∈ (Z2)
n s.t. y ̸= 0. Then,

x+ y ̸= x, x+ y + y = x.

Motivation: after Eve receives message, she can add the secret vector y then recover the
code encrypted by Alice by adding y.

Alice Bob

Send Message

Eve

XOR encrypt XOR decrypt

Encode Decode
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4 Size and Distance

4.1 Metrics and Absolute Values for Integral Domains

Remarks 4.1.0.0.1. Thus far, we have explored many different vector space notions. We
now discuss the notions of “length” and “distance” for vectors.

In point set topology, the distance between objects is defined using a metric, while the
length of an object is defined using a norm.

Definition 4.1.1 (A Metric). Let M be a set. Let d : M × M → R be a function. The
function d is a metric if

1. d(x, y) ≥ 0,∀x, y ∈ M. non-negativity

2. d(x, y) = d(y, x). commutativity/symmetric

3. d(x, y) = 0 ⇐⇒ x = y. zero distance is equivalent to equality

4. d(x, z) ≤ d(x, y) + d(y, z). ∆ inequality
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Ex. Euclidean metric.
Let z1, z2 ∈ C. Let z1 = a+ bi and z2 = c+ di. Let

d(z1, z2) =
√

(a− c)2 + (b− d)2.

show that d is a metric.

Solution. First we show that d(x, y) ≥ 0.
Let x, y ∈ C be arbitrary such that x = a+ bi and y = c+ di. Then,

d(x, y) =
√

(a− c)2 + (b− d)2

note that (a− c)2 and (b− d)2 ≥ 0 =⇒ (a− c)2(b− d)2 ≥ 0

thus,
√

(a− c)2 + (b− d)2 is defined for all x, y ∈ C
=⇒ d(x, y) ≥ 0, ∀x, y ∈ C as range(

√
·) = [0,∞).

Then, we show that d(x, y) = d(y, x). Note that

d(x, y) =
√
(a− c)2 + (b− d)2

=
√
a2 − 2ac+ c2 + b2 − 2bd+ d2

=
√
c2 − 2ac+ a2 + d2 − 2bd+ b2

=
√

(c− a)2 + (d− b)2

= d(y, x) by definition

Now we show d(x, y) = 0 ⇐⇒ x = y. Consider

d(x, y) = 0 =
√

(a− c)2 + (b− d)2

⇐⇒ a− c = 0 and b− d = 0 since (·)2 ≥ 0,∀·
⇐⇒ a = c and b = d

⇐⇒ x = y by definition.

Exercise, prove ∆ inequality. ■
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Ex. Consider Zp, where p ̸= 2 and p is prime. Let

d(a, b) = min {a+ mod p (−b), b+ mod p (−a)} .

Show that d is a metric.

Solution. First we show non-negative. As elements of Zp are non-negative,

a+mod p (−b) ≥ 0 and b+mod p (−a) ≥ 0.

Then, we show symmetry. Let a, b ∈ Zp. Then,

d(a, b) = min {a+ mod p (−b), b+ mod p (−a)}
= min { b+ mod p (−a), a+ mod p (−b)}

by set extensionality axiom,i.e., set identity despite order

= d(b, a) by definition.

Next, we show that d(a, b) = 0 ⇐⇒ a = b.
As Zp is a field, additive inverse is unique.

a+ mod p (−b) = 0 ⇐⇒ −b = −a

⇐⇒ a = b

And that

b+ mod p (−a) = 0 ⇐⇒ −a = −b

⇐⇒ a = b

Lastly, we show ∆ inequality. # left as an exercise. ■
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Definition 4.1.2 (Absolute Value–valuation,magnitude,norm). LetD be an integral domain
or field. The function | · | : D → R is an absolute value function if

1. |x| ≥ 0,∀x ∈ D non-negativity

2. |x| = 0 ⇐⇒ x = 0

3. |xy| = |x||y|,∀x, y ∈ D multiplication

4. |x+ y| ≤ |x|+ |y|,∀x, y ∈ D. ∆ Inequality

Remarks 4.1.2.0.1. Oftentimes in math, there is a “natural” choice for something. For ex,
the “natural” choice for a basis is the standard basis. Similarly, there are sets for which we
have a “natural” absolute value. For ex,

• For real numbers: |x| =
√
x2

• For complex numbers: |a+ bi| =
√
a2 + b2 modulus

• For Finite Field: The Trivial Absolute Value

• For Polynomials: There are plenty, but they are more obscure

Ex. The modulus and trivial absolute value.

Show that the modulus of a complex number forms an absolute value.

Trivial Absolute Value:

f(x) =

{
1, if x ̸= 0

0, if x = 0

Show that f is an absolute value for all fields. Ex. The degree of a polynomial is not an
absolute value!
Let f be a polynomial. The deg function is not an absolute value (as it fails multiplication
and ∆ inequality.)

Remarks 4.1.2.0.2 (Norms can mean different things for different algebraic structures.).
Some authors define a norm to be a function f : D → R such that

1. f(x) ≥ 0

2. If f(x) ̸= 0 and f(y) ̸= 0, then f(x) ≤ f(x)f(y).

This definition of a norm does not agree with our definition of norms: such functions are
not necessarily absolute value functions. We will not use this nomenclature here.
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Theorem 4.1.2.1. The absolute value of 1̂ is 1(∈ R)

Proposition 4.1.2.2.
1̂−1 = 1, −0 = 0.

Proof. Let a be the multiplicative inverse for 1. Then,

1 · a = 1

=⇒ |1 · a| = |1|
=⇒ |1||a| = |1|
=⇒ |1||a| − |1| = 0

=⇒ |1|(|a| − 1) = 0.

As 1 ̸= 0, |1| ≠ 0. Thus,

|a| − 1 = 0

=⇒ |a| = 1

as the multiplicative inverse of 1 is 1,
|â| = 1.

Theorem 4.1.2.3 (uniqueness of trivial absolute value for finite fields.). The trivial absolute
value is the only absolute value for finite fields

Proof. Let y ∈ F be nonzero. As F is a finite field, the set {y, y1, y2, . . .} is finite. It follows
that there exists 0 < a < b < ∞ such that ya = yb, and so there exists 0 < k < ∞ such that
yk = 1. Because | · | is a norm,

|y|k = |yk| = |1| = 1

so,

|y| =

{
±1, if k is even,

1, if k is odd

As | · | is an absolute value it is nonnegative, thus |y| = 1. It follows that | · | is the trivial
absolute value.

Ex. Let D be an integral domain. Let a ∈ D. Then, |a| = |−a| .

Remarks 4.1.2.3.1. Given an absolute value, we can define a metric.
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Theorem 4.1.2.4 (Absolute values functions induce a metric). Let D be an integral domain
(or field). Let

| · | : D → R
be an absolute value. Let d(x, y) = |x− y|, for all x, y ∈ D. Then d is a metric for D.

Proof. Let x, y ∈ D. Then,

d(x, y) = |x− y| ≥ 0 as |·| : D → [0,∞)

Also,

d(x, y) = |x− y|
= |x+ (−y)|
= |x+ (−1)y|
= |(−1)y + x|
= |−1| |(−1)y + x|
= |(−1)((−1)y + x)|
= |y − x|
= d(y, x).

Now, note that

d(x, y) = 0 ⇐⇒ |x− y| = 0

⇐⇒ x− y = 0

⇐⇒ x = y.

Lastly,

d(x, z) = |x+ 0− z|
= |x− y + y − z|
≤ |x− y|+ |y − z|
= d(x, y) + d(y, z).

Ex.Show that the Euclidean distance is a metric by showing that it is the metric induced
by the modulus function for complex numbers and the standard absolute value function for
real numbers. That is to say, show

1. |(a+ bi)− (c+ di)| =
√
(a− c)2 + (b− d)2

2. |a− b| =
√
(a− b)2
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Remarks 4.1.2.4.1. Not all metrics are induced by an absolute value function. Consider
Zp s.t. p ̸= 2. Let

d(a, b) = min {a− b( (mod p)), b− a( (mod p))} .

Show that d is not induced by the trivial absolute value.
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4.2 Metrics and Norms for Vector Spaces

Definition 4.2.1 (A metric for vector spaces). Let B be a vector space. Let d : V ×V → R
be a function. The function d is a metric, if:

1. d(v, w) ≥ 0, ∀v, w ∈ V. non-negativity

2. d(v, w) = d(w, v) commutativity/symmetric

3. d(v, w) = 0 ⇐⇒ v = w. zero distance for equality

4. d(u,w) ≤ d(u, v) + d(v, w) ∆ inequality

Ex. Euclidean Metric Let x, y ∈ R2. Let f(x, y) =
√∑2

i=1(xi − yi)2.

Show that the function f(x, y) is a metric.

Theorem 4.2.1.1 (1-metric –Taxi/Manhattan Metric). Let x, y ∈ Fn. and d(x, y) be a
metric for F. Let

f(x, y) =
n∑

i=1

d(xi, yi).

Then, f is a metric.

Exercise. Let F be a field and d be a metric. Show that the following definitions of
f(x, y) define a metric on Fn:

1. Euclidean Metric (2-metric): f(x, y) =
√∑n

i=1 d(xi, yi)2

2. L∞ or Chebyshev distance: f(x, y) = max{d(xi, yi)}ni=1

Remarks 4.2.1.1.1. Not all metrics are “nice” for vector spaces. When working with
vector spaces, we typically would like our metric further satisfy two specific properties to
be considered “nice”. Conveying why such metrics are “nice” is the goal of the rest of this
section. Explicitly, we will show that a metric is “nice” iff a norm induces the metric.

1. Scaling our vectors by λ, scales our metric.

• Let λ ∈ F, then d(λx, λy) = |λ|d(x, y).

2. Translation invariance

• Let z ∈ V , then d(x+ z, y + z) = d(x, y).
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Definition 4.2.2 (Vector Norm). A norm (vector norm). Let V be a set. Let ∥ · ∥ :
V → R be a function and | · | : F → R be an absolute value. The function ∥ · ∥ : V → R is a
norm if:

1. ∥x∥ ≥ 0 for all x ∈ V . (Non-negative)

2. ∥x∥ = 0 if and only if x = 0. (zero if and only if zero)

3. ∥λx∥ = |λ|∥x∥, for all λ ∈ F and x ∈ V . (distributes with scaling)

4. ∥x+ y∥ ≤ ∥x∥+ ∥y∥, for all x, y ∈ V . (Triangle inequality)

Exercise. Let ∥ · ∥ be a vector space with absolute value |·| .
Show that ∥a∥ = ∥ − a∥,∀a ∈ V.
Ex. Euclidean Norm.
Let x ∈ R2. Let ∥x∥ =

√
x2
1 + x2

2. Show that ∥ · ∥ is a norm with the standard absolute
value for real numbers.

Proof. Let λ ∈ R and x ∈ R2. Then x = (x1, x2). Thus,

∥λx∥ = ∥λ (x1, x2)∥
= ∥(λx1, λx2)∥

=

√
(λx1)

2 + (λx2)2

= |λ| ∥x∥ .

Also,

∥x+ y∥ ≤ ∥x∥+ ∥y∥ see week five lecture notes; note the iff with disjunction

Remarks 4.2.2.0.1. We have shown that in R2 we can define a metric using the norm in
the following manner:

d(x, y) = ∥x− y∥2.

The next theorem shows that this procedure of inducing a metric from a norm works
generally.
See suggested exercises from lecture.
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Theorem 4.2.2.1 (All vector norms induce a metric). Let ∥ · ∥ : V → R be a norm with
absolute value | · |. Then d(x, y) = ∥x− y∥ is a metric for V .

Proof. Let x, y ∈ V. Then, d(x, y) = ∥x− y∥ ≥ 0. Further,

d(x, y) = ∥x, y∥ = ∥(−1)(−1)(x− y)∥ = |−1| ∥−1(x− y)∥ = 1 ∥y − x∥ = d(y, x).

Note that
d(x, y) = 0 ⇐⇒ ∥x− y∥ = 0 ⇐⇒ x− y = 0 ⇐⇒ x = y.

Finally, for z ∈ V.

d(x, z) = ∥x− z∥ = ∥(x− y) + (y − z)∥
≤ ∥x− y∥+ ∥y − z∥
= d(x, y) + d(y, z)

Exercises: Let ∥ ·∥ : V → R be a norm. Let d(x, y) = ∥x−y∥. Show that the following
two properties hold:

• Let λ ∈ F, then d(λx, λy) = |λ|d(x, y). The function |λ| depends on the field used to
define the vector space.

• Let z ∈ V , then d(x+ z, y + z) = d(x, y).

Remarks 4.2.2.1.1. If V is a vector space with a norm ∥ · ∥, then we can create a metric
for the vector space, by letting d(x, y) = ∥x− y∥.

It is natural to ask if the converse holds. That is, given a vector space V and a metric d,
can we create a norm by letting ∥x∥ = d(x, 0)? It turns out that the answer is yes provided
that our metric is “nice.”
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Theorem 4.2.2.2 (Nice Metrics Induce a Norm). Let V be a vector space and d be a metric
such that

• Let λ ∈ F, then d(λx, λy) = |λ|d(x, y). The function |λ| depends on the field used to
define the vector space.

• Let z ∈ V , then d(x+ z, y + z) = d(x, y).

Show that ∥x∥ = d(x, 0) is a norm.

Proof. let x ∈ V. Then,
∥x∥ = d(x, 0) ≥ 0.

Also,
∥x∥ = 0 ⇐⇒ d(x, 0) = 0 ⇐⇒ x = 0.

Further,
∥λx∥ = d(λx, 0) = |λ| d(x, 0) = |λ| ∥x∥ .

Let x, y ∈ V. Then,

∥x+ y∥ = d(x+ y, 0) = d(x+ y − y, 0− y)

= d(x,−y)

≤ d(x, 0) + d(0,−y) triangle inequality

= d(x, 0) + d(0 + y,−y + y) assumption

= ∥x∥+ ∥y∥ .

Remarks 4.2.2.2.1. We have just shown that given a “nice” metric d we can define a norm
by setting ∥x∥ = d(x, 0).

Now, observe that the metric d can alternatively be interpreted as the metric induced by
this exact norm. Combining this observation with the results we have shown thus far, we
see that a metric is “nice” iff the metric is induced by a norm!
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4.3 Operator Norms and Matrix Norms

Definition 4.3.1 (operator norm). Let V and W be both be real or both be complex vector
spaces. Let T : V → W be a linear transformation. Let ∥ · ∥V be a norm for V and ∥ · ∥W
be a norm for W . Then the operator norm of T is defined as

∥T∥op = sup{∥T (v)∥W : ∥v∥V ≤ 1}.

Definition 4.3.2 (matrix norm). Let A be a real or complex n×m matrix. Let ∥ · ∥V be a
norm for Fm and ∥ · ∥W be a norm for Fn. Then the matrix norm of A is defined as

∥A∥op = sup{∥Av∥W : ∥v∥V ≤ 1}.

Exercise: Show that the Operator norm and Matrix norm are norms. That is to say:

1. ∥T∥ ≥ 0

2. ∥T∥ = 0 if and only if T = 0

3. ∥aT∥ = |a| · ∥T∥

4. ∥S + T∥ ≤ ∥S∥+ ∥T∥

and

1. ∥A∥ ≥ 0

2. ∥A∥ = 0 if and only if T = 0

3. ∥aA∥ = |a| · ∥A∥

4. ∥A+B∥ ≤ ∥A∥+ ∥B∥
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5 Inner Product Spaces

5.1 Hermitian Inner Product

Definition 5.1.1 (Inner Product). Let V be a vector space over F, (C ∨ R). An Inner
Product on V is a function ⟨·, ·⟩ : V × V → F such that ∀α, β, γ ∈ V and ∀c ∈ F

1. ⟨α + β|γ⟩ = ⟨α, γ⟩+ ⟨β, γ⟩

2. ⟨cα, β⟩ = c ⟨α, β⟩

3. ⟨β, α⟩ = ⟨α, β⟩

4. ⟨α, α⟩ ≥ 0 and ⟨α, α⟩ = 0 ⇐⇒ α = 0.

Exercise. Prove that conjugate linear in the second argument:

⟨α, cβ + γ⟩ = c ⟨α, β⟩+ ⟨α, γ⟩ .

Ex. Standard Inner Product.
Let α = (x1, · · · , xn), β = (y1, · · · , yn).

Over C ⇒ α · β =
n∑

j=1

xjyj

Over R ⇒ α · β =
n∑

j=1

xjyj

Proof. Let α, β ∈ Cn. Then,

⟨α + β, γ⟩ = ⟨α, γ⟩+ ⟨β, γ⟩ .

Let α, β, γ ∈ Cn s.t. the ith entry of x is xi. Then,

⟨α + β, γ⟩ = ⟨(α1, . . . , αn) + (β1, . . . , βn), (γ1, . . . , γn)⟩

=
n∑

i=1

(αi + yi) · zi

=
n∑

i=1

xizi +
n∑

i=1

yizi

= ⟨x, z⟩+ ⟨y, z⟩ .

The rest left as an exercise.

p. 52



MATB24: Eric Wu 5 INNER PRODUCT SPACES

Exercise. For each of the following functions, show that they are inner products:

1. Let α = (x1, x2), β = (y1, y2) ∈ R2, define

⟨α|β⟩ = x1y1 − x2y1 − x1y2 + 4x2y2.

2. Given A := (aj,k) ∈ Cn×n, the A∗ := (ak,j) is the complex transpose of A. We can
define an inner product on Cn×n by:

⟨A|B⟩ = trace(AB∗) =
n∑

j=1

(AB∗)jj =
n∑

j=1

n∑
k=1

aj,kbk,j.

3. Let V be the space of continuous functions f : [0, 1] → C. Define an inner product of
V by:

⟨f |g⟩ =
∫ 1

0

f(x)g(x) dx.

Theorem 5.1.1.1 (Basic properties of inner products). Let ⟨· | ·⟩ be an inner product. Let
x, y, z be arbitrary vectors and a, b be arbitrary scalars. Then:

1. ⟨x | 0⟩ = ⟨0 | x⟩ = 0

2. ⟨x | x⟩ = 0 if and only if x = 0

3. ⟨x | ay + bz⟩ = a⟨x | y⟩+ b⟨x | z⟩

4. ⟨x+ y | x+ y⟩ = ⟨x | x⟩+ 2Re(⟨x | y⟩) + ⟨y | y⟩

Theorem 5.1.1.2 (Inner Products Induce a Norm). Let ⟨·|·⟩ be an inner product on V, we
can define a norm

∥v∥ =
√

⟨v|v⟩.

Remarks 5.1.1.2.1 (Are all norm’s induced by inner products). The 1-norm and L∞ norm
are not induced by an inner product. Similar to how not all metrics are induced by norms,
not all norms are induced by inner products. Luckily, there was—with determining if a
metric could be induced by a norm—a nice way to determine if a norm is induced by an
inner product.

Theorem 5.1.1.3 (Parallelorgram Law). Let ∥ · ∥ be a norm for a vector space V . Then,
∥ · ∥ is induced by an inner product if and only if the norm satisfies the Parallelogram Law :

∥x+ y∥2 + ∥x− y∥2 = 2(∥x∥2 + ∥y∥2).

Proof. Leave as an exercise.
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Exercise. Let ⟨· | ·⟩ be an inner product and let ∥ · ∥ be defined as follows:

∥u∥ =
√
⟨u | u⟩ ∀u ∈ V.

Show that ∥ · ∥ satisfies

∥x+ y∥2 + ∥x− y∥2 = 2(∥x∥2 + ∥y∥2).

Definition 5.1.2 (Polarization identity). Let V be a vector space and ∥ · ∥ be a norm that
satisfies the parallelogram law. Then the polarization identity recovers the inner product
from the norm:

Real domain:

⟨α | β⟩ = 1

4
∥α + β∥2 − 1

4
∥α− β∥2

Complex case domain:

⟨α | β⟩ = 1

4
∥α + β∥2 − 1

4
∥α− β∥2 + i

4
∥α + iβ∥2 − i

4
∥α− iβ∥2

Exercise. Consider V = Cn. Let x = (x1, . . . , xn) ∈ V . Let ∥ · ∥ be defined as follows:

∥x∥ =

√√√√ n∑
i=1

|xi|2,

where | · | is the modulus of the complex number.

1. Show that | · | is an absolute value function.

2. Show that ∥ · ∥ is a norm.

3. Define the metric induced by ∥x∥.

4. Show that ∥ · ∥ satisfies the Parallelogram Law.

5. Define the inner product induced by ∥x∥.

Definition 5.1.3 (Matrix Representation of Inner Products). Let V be a vector space and
let β = {α1, · · · , αn} be an ordered basis for V . Suppose ⟨· | ·⟩ is an inner product on V .
Then the matrix of the inner product in β is

Gjk := (⟨αk, αj⟩) ∈ Cn×n ∨ Rn×n.
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Ex. The matrix G. Let V be a vector space and let β = {α1, · · · , αn} be an ordered basis
for V . Suppose ⟨· | ·⟩ is an inner product on V . Let

Gj,k = ⟨αk | αj⟩ ∈ Cn×n.

Let x, y ∈ V , show that
⟨x | y⟩ = [y]∗βG[x]β.

Proof. As x, y ∈ V. x =
∑n

i=1 xiαi y =
∑n

i=1 yjαj. Note that we have

⟨x, y⟩ =

〈
n∑

i=1

xiαi,

n∑
i=1

yjαj

〉
by definition of x, y

=
n∑

i=1

xi

〈
αi,

n∑
i=1

yjαj

〉
as ⟨⟩ is linear in the first entry

=
n∑

i=1

xi

〈
n∑

i=1

yjαj, αi

〉
conjugate symmetry

=
n∑

i=1

xi

(
n∑

j=1

yj · ⟨αj, αi⟩

)

=
n∑

i=1

xi

(
n∑

j=1

yj · ⟨αi, αj⟩

)

=
n∑

j=1

n∑
i=1

xiyj · ⟨αi, αj⟩

On the other hand,

[y]∗β G [x]β =
[
y1 . . . yn

]
G

x1
...
xn



=
[
y1 . . . yn

]

∑n

i=1 ⟨αi, α1⟩xi∑n
i=1 ⟨αi, α2⟩xi

...∑n
i=1 ⟨αi, αn⟩xi


=

n∑
j=1

yj

(
n∑

i=1

⟨αi, αj⟩xi

)

=
n∑

j=1

n∑
i=1

xiyj · ⟨αi, αj⟩

= ⟨x, y⟩ as needed.

p. 55



MATB24: Eric Wu 5 INNER PRODUCT SPACES

Exercise. Show that matrix G for the standard inner product, using the standard basis,
is the identity matrix. Exercise.

1. Let β be a finite basis for a real vector space V and ⟨·, ·⟩ be an inner product. Show
that the matrix representation is a symmetric matrix.

2. Let β be a finite basis for a complex vector space V and ⟨·, ·⟩ be an inner product.
Show that the matrix representation is a Hermitian matrix (we will learn what this
means shortly).

Ex. Let ⟨·|·⟩ be the standard inner product for Rn. Define

A =

[
⟨e1, e1⟩ ⟨e2, e1⟩
⟨e1, e2⟩ ⟨e2, e2⟩

]
=

[
1 0
0 1

]
.

Then, A is the matrix representation of the inner product.
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5.2 Quadratic Forms

Definition 5.2.1 (Quadratic Forms). Let x ∈ Rn.A function f(x1, . . . , xn) =
∑n

i=1

∑n
j=1 ai,jxixj.

Let x ∈ Cn. A function f(x1, . . . , xn) =
∑n

i=1

∑n
j=1 ai,jxixj.

Theorem 5.2.1.1 (Matrix Representation of quadratic forms). Let x ∈ Rn and f be a
quadratic form f(x) =

∑n
i=1

∑n
j=1 ai,jxixj. Let A = [aij] . Then,

xTAx = f(x).

Theorem 5.2.1.2 (Complex case). Let x ∈ Rn and f be a quadratic form f(x) =
∑n

i=1

∑n
j=1 ai,jxixj.

Let A = [aij] . Then,

xTAx = f(x).

5.3 Inner Product Spaces

An inner product space is a vector space, V , with specified inner product on V .

Theorem 5.3.0.1 (Inner Product Spaces). Let (V, ⟨·⟩) be an inner product space. Let ∥·∥
be the norm induced by the inner product. Then, ∀α, β ∈ V and c ∈ F,

1. ∥cα∥ = |c| ∥α∥ .

2. ∥α∥ > 0,∀α ̸= 0.

3. |⟨α|β⟩| ≤ ∥α∥ ∗ ∥β∥ . Cauchy-Schwartz inequality

4. ∥α + β∥ ≤ ∥α∥+ ∥β∥ . Triangle Inequality

Ex. By Cauchy-Schwartz inequality, we have

1. (Dot product) ∣∣∣∣∣
n∑

k=1

xkyk

∣∣∣∣∣ ≤
(

n∑
k=1

|xk|2
)1/2( n∑

k=1

|yk|2
)1/2

.

2.
|x1y1 − x2y1 − x1y2 + 4x2y2| ≤

(
(x1 − x2)

2 + 3x2
2

)1/2 (
(y1 − y2)

2 + 3y22
)1/2

.

3.
|tr(AB∗)| ≤ (tr(A∗A))1/2 (tr(B∗B))1/2 .

4. ∣∣∣∣∫ 1

0

f(t)g(t) dt

∣∣∣∣ ≤ (∫ 1

0

|f(t)|2 dt
)1/2(∫ 1

0

|g(t)|2 dt
)1/2

.
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Proof. Of Cauchy-Schwartz Inequality. We prove by cases.
Case 1: α = aβ, for some aF. Then,

|⟨α, β⟩| = |a ⟨β, β⟩|
= |a| ⟨β, β⟩

=

√
|a|2 ⟨ββ⟩2

=

√
|a|2 ⟨β, β⟩ ⟨ββ⟩

=
√
aa ⟨β, β⟩ ⟨β, β⟩

=
√

⟨aβ, aβ⟩ ⟨β, β⟩
=
√

⟨α, α⟩ ⟨β, β⟩
=
√

⟨α, α⟩
√

⟨β, β⟩
= ∥α∥ · ∥β∥ .

Case 2: α ̸= aβ, ∀a ∈ F Note that thus α− aβ ̸= 0,∀a. By Properties of inner product,

⟨α− aβ, α− aβ⟩ > 0

=⇒ ⟨α, α⟩ − a ⟨β, α⟩ − a ⟨α, β⟩+ aa ⟨β, β⟩ > 0

From which it is established for all a. Consider a = ⟨α,β⟩
⟨β,β⟩ . Then, substitution yields:

⟨α | α⟩ − ⟨α | β⟩
⟨β | β⟩

⟨β | α⟩ − ⟨β | α⟩
⟨β | β⟩

⟨α | β⟩+ ⟨α | β⟩⟨β | α⟩
⟨β | β⟩

> 0

⇒ ⟨α | α⟩ − ⟨α | β⟩⟨β | α⟩
⟨β | β⟩

− ⟨β | α⟩⟨α | β⟩
⟨β | β⟩

+
⟨α | β⟩⟨β | α⟩

⟨β | β⟩
> 0

⇒ ⟨α | α⟩ − ⟨α | β⟩⟨β | α⟩
⟨β | β⟩

> 0

⇒ ⟨α | α⟩⟨β | β⟩ − ⟨α | β⟩⟨β | α⟩ > 0

⇒ ⟨α | β⟩⟨β | α⟩ < ⟨α | α⟩⟨β | β⟩

⇒ ⟨α | β⟩⟨β | α⟩ < ∥α∥2∥β∥2

⇒
√

⟨α | β⟩⟨β | α⟩ < ∥α∥∥β∥

⇒ |⟨α | β⟩| < ∥α∥∥β∥.

The idea is we pick the value of a a that minimizes the expression — and the resulting
inequality still holds, and gives us the sharpest possible result.
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5.4 Orthogonality

Definition 5.4.1 (Orthogonality). Let V be a vector space with a defined inner product.
Then α is orthogonal to β if

⟨α|β⟩ = 0.

Remarks 5.4.1.0.1. One can show that

⟨x, y⟩ = ∥x∥ · ∥y∥ cos (θ) where theta is the angle between x and y

when n = 2, 3.

Definition 5.4.2 (Orthogonal and Orthonormal Sets).

1. A set of vectors S ⊆ V is orthogonal if

⟨α, β⟩ = 0,∀α ̸= β ∈ S.

2. S ⊆ V is an orthonormal set if S is an orthogonal set of unit vectors, i.e.,

∥α∥ = 1, ∀α ∈ S.

3. A basis that is orthonormal is called an orthonormal basis.

Ex.

1. Let V = Cn×n with the trace inner product ⟨A | B⟩ = tr(B∗A). The set {Ep,q : 1 ≤
p, q ≤ n}, where Ep,q has zero entries everywhere except the p, qth entry, which is equal
to 1.

2. The prototypical exof an orthonormal basis is the standard basis {e1, · · · , en} for Rn

and Cn. While the standard basis is an orthonormal basis, with respect to the standard
inner product, the standard basis does not form an orthonormal basis with respect to
⟨α | β⟩ = x1y1 − x2y1 − x1y2 + 4x2y2

3. Let the vector space V be the set of continuous functions f : [0, 1] → C. For all n ∈ N,
let:

fn(x) =
√
2 cos(2πnx), gn(x) =

√
2 sin(2πnx),

Prove that the set {1, f1, g1, f2, g2, · · · } is an infinite orthonormal set in V with respect
to the inner product

⟨f | g⟩ =
∫ 1

0

fg.

(This is often called the Fourier Basis for V .)
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Proposition 5.4.2.1 (Orthogonal Sets are Linearly Independent). Let V be an inner product
space. An orthogonal set S ⊆ V of non-zero vectors is linearly independent.

Proof. Let α1, . . . , αn be distinct vectors that is non-zero in S and let β =
∑m

i ciαi Then,

⟨β|αk⟩ = ⟨c1α1 + · · ·+ cmαm|αk⟩

=
m∑
j=1

cj ⟨αj|αk⟩

= ck ⟨αk|αk⟩
= ck ∥αk∥2 ̸= 0

Thus ck =
⟨β|αk⟩
∥αk∥2

, ∀1 ≤ k ≤ m. Note that as αk ̸= 0, ∀k this is valid. Note that if β = 0, then,

ck =
⟨0|αk⟩
∥αk∥2

= 0. Thus, {α1, . . . , αm} is linearly independent.

Corollary 5.4.2.1.1 (β ∈ S). If {α1, . . . , αm} = B is a set of orthogonal non-zero vectors
that spans V, then ∀β ∈ Span(B),

β =
m∑
k=1

⟨β|αk⟩
∥αk∥2

αk.

Remarks 5.4.2.1.1 (Orthonormal Basis Defines Nice Coordinate Vectors). Observe, if
{α1, · · · , αm} is an orthonormal basis for V , then

∀β ∈ V, β =
n∑

k=1

⟨β | αk⟩αk

This result tells us that if we have an orthonormal basis a1, . . . , an, we can similarly
assign coordinates, except that this time the coordinates are: ⟨β, ai⟩.

Thus, the standard basis and orthonormal basis are similar in the sense that they allow
us to easily assign coordinates to vectors.
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Ex. Let α1 = 1√
2
(1, 1), α2 = 1√

2
(1,−1) ∈ R2. Prove that {α1, α2} is an orthonormal basis

using the standard inner product.

Proof. Prove Unit Length:

∥α1∥ =
1√
2
· 1√

2
[(1)(1) + (1)(1)] = 1

∥α2∥ =
1√
2
· 1√

2
[(1)(1) + (−1)(−1)] = 1

Prove orthogonal:

⟨α1 | α2⟩ =
1√
2
· 1√

2
[(1)(1) + (1)(−1)] = 0

Verifying the corollary for this ex: Let β = (a, b), then

⟨β | α1⟩α1 + ⟨β | α2⟩α2 =
a+ b√

2

(
1√
2
,
1√
2

)
+

a− b√
2

(
1√
2
,− 1√

2

)

=
1

2
[(a+ b, a+ b) + (a− b, a− b)] = (a, b) = β.

Ex. Compute the coordinate vector for (1, 3) using the basis

β =

{
1√
2
(1, 1),

1√
2
(1,−1)

}
.

Solution.

[(1, 3)]β =

 〈(1, 3) | 1√
2
(1, 1)

〉〈
(1, 3) | 1√

2
(1,−1)

〉 =

[
1√
2
⟨(1, 3) | (1, 1)⟩

1√
2
⟨(1, 3) | (1,−1)⟩

]
=

[
1√
2
(1 + 3)

1√
2
(1− 3)

]
=

[
4√
2

−2√
2

]
.

■

Theorem 5.4.2.2 (Matrix Representations of Linear Transformations with respect to Or-
thonormal Bases). Let T ∈ L(V ) and suppose β = {α1, · · · , αn} is an ordered orthonormal basis
for V . Let

A = [T ]β = (Akj),

where 1 ≤ k, j ≤ n, then

Akj = ⟨Tαj | αk⟩, ∀ 1 ≤ j, k ≤ n
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Ex. Let T ∈ L(R2) and

β =

{
1√
2
(1, 1),

1√
2
(1,−1)

}
.

If T (x, y) = (x+ y, x− y), compute [T ]β.

[T ]β =

[
⟨Tα1 | α1⟩ ⟨Tα2 | α1⟩
⟨Tα1 | α2⟩ ⟨Tα2 | α2⟩

]
=

[
⟨(2/

√
2, 0) | (1/

√
2, 1/

√
2)⟩ ⟨(0, 2/

√
2) | (1/

√
2, 1/

√
2)⟩

⟨(2/
√
2, 0) | (1/

√
2,−1/

√
2)⟩ ⟨(0, 2/

√
2) | (1/

√
2,−1/

√
2)⟩

]

=

[
2 2
2 −2

]
.

5.5 Gram-Schmidt Process

Remarks 5.5.0.0.1. As we just learned, and we will continue to learn, life is generally much
better when working with an orthonormal basis as opposed to a regular basis. Thus, it is of
interest to develop a method to produce one from a basis which preserves the span and is
orthonormal. Explicitly, what we want to achieve is the following:

Let {β1, · · · , βm} be Linearly Independent in V . Then we can construct a set of
orthonormal vectors {α1, · · · , αm} in V that preserves the span, that is

span{α1, · · · , αk} = span{β1, · · · , βk}, ∀k = 1, · · · , βm.

The Gram-Schmidt process accomplishes this goal.

Theorem 5.5.0.1 (Gram-Schmidt Procedure). Let {β1, . . . , βj} be a linearly independent
set of vectors. Consider the set of vectors {α1, . . . , αj} defined by the Gram-Schmidt proce-
dure:

1. Let α1 = β1.

2. Let α2 = β2 − ⟨β2|α1⟩
∥α1∥2 α1.

...

j. Let

αj = βj −
j−1∑
k=1

⟨βj | αk⟩
∥αk∥2

αk.

Then, the set {α1, . . . , αj} is orthogonal and αi ̸= 0. Note that the Gram-Schmidt process
only produces an orthogonal set and not an orthonormal one.
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Theorem 5.5.0.2 (Gram-Schmidt-Orthonormality). Let V be a finite dimensional vector

space such that dim(V ) ≥ 2. Let β =
{

α1

∥α1∥ , . . . ,
α1

∥αn∥

}
be a basis constructed using the

Gram-Schmidt process. Then, β is Orthonormal.

Proof. Firstly, note that ∥αi∥ ≠ 0 so we can define β as follows.

β = {α1/∥α1∥, . . . , αj/∥αj∥} .

First, we will prove that every vector is unit length.〈
αi

∥αi∥
,

αi

∥αi∥

〉
=

1

∥αi∥2
⟨αi, αi⟩ =

1

⟨αi, αi⟩
⟨αi, αi⟩ = 1.

As we have proven every vector is unit length, we must show that〈
αi

∥αi∥
,

αj

∥αj∥

〉
= 0 when i ̸= j.

Note that 〈
αi

∥αi∥
,

αj

∥αj∥

〉
=

1

∥αi∥∥αj∥
⟨αi, αj⟩.

Thus, 〈
αi

∥αi∥
,

αj

∥αj∥

〉
= 0 ⇐⇒ ⟨αi, αj⟩ = 0.

To make the analysis easier, we will show that ⟨αi, αj⟩ = 0 for all i ̸= j. (This is going
to be a proof via strong induction.)

Base case: n = 2.

⟨α2 | α1⟩ = ⟨β2 | α1⟩ −
⟨β2 | α1⟩
⟨α1 | α1⟩

⟨α1 | α1⟩ = ⟨β2 | α1⟩ − ⟨β2 | α1⟩ = 0.

n+ 1 case:
Assume that ⟨αi, αj⟩ = 0 for i ̸= j, when i, j ∈ {1, . . . , n}. (This is our use of strong

induction.)
Consider ⟨αn+1 | αj⟩:

⟨αn+1 | αj⟩ =

〈
βn+1 −

n∑
k=1

⟨βn+1 | αk⟩
⟨αk | αk⟩

αk

∣∣∣∣∣αj

〉

= ⟨βn+1 | αj⟩ −

〈
n∑

k=1

⟨βn+1 | αk⟩
⟨αk | αk⟩

αk

∣∣∣∣∣αj

〉
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= ⟨βn+1 | αj⟩ −
n∑

k=1

⟨βn+1 | αk⟩
⟨αk | αk⟩

⟨αk | αj⟩

= ⟨βn+1 | αj⟩ −
j−1∑
k=1

⟨βn+1 | αk⟩
⟨αk | αk⟩

⟨αk | αj⟩ −
⟨βn+1 | αj⟩
⟨αj | αj⟩

⟨αj | αj⟩ −
n∑

k=j+1

⟨βn+1 | αk⟩
⟨αk | αk⟩

⟨αk | αj⟩

= ⟨βn+1 | αj⟩ − 0− ⟨βn+1 | αj⟩ − 0 = 0.

Corollary 5.5.0.2.1. Every finite-dimensional inner product space has an orthonormal ba-
sis.

5.6 Orthogonal Projections

Definition 5.6.1 (Best Approximation). Let W be a subspace of an inner product space V.
Let β ∈ V. The best approximation to β, by the vectors in V is the vector α ∈ W s.t.

∥β − α∥ ≤ ∥β − γ∥ ⇐⇒ d(β, α) ≤ d(β, γ) ⇐⇒ ∥β − α∥ = min
γ∈W

∥β − γ∥ ,∀γ ∈ W.

Theorem 5.6.1.1. Let W be a subspace of an inner product space V and let β ∈ V . Then:

1. Best approximations are characterized by an orthogonality relation:

The vector x ∈ W is a best approximation to β by vectors in W if and only if β − x is
orthogonal to every vector in W .

2. The best approximation exists and can be computed with a formula:

If W is finite-dimensional and {w1, . . . , wn} is any orthonormal basis for W , then the
vector

x =
n∑

i=1

⟨β | wi⟩
⟨wi|wi⟩

wi

is the (unique) best approximation to β by vectors in W .

3. Best approximations are unique:

(a) If a best approximation to β by vectors in W exists, it is unique.

Proof. First let γ ∈ V, then β − γ = (γ − α) + (α− γ) , thus

∥β − γ∥2 = ∥β − α∥2 + 2ℜ (⟨β − α|α− γ⟩) + ∥α− γ∥2 .
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⇐ . Suppose β − α is orthogonal to every vector in W, that γ ∈ W s.t. γ ̸= α. Then, since
α− γ ∈ W, it follows that as ⟨β − α|α− γ⟩ = 0 and ∥α− γ∥ > 0,

∥β − γ∥2 = ∥β − γ∥2 + ∥α− γ∥2 > ∥β − α∥2 .

Thus, α is the best approximation to β by definition.
⇒ . Suppose ∥β − α∥2 ≤ ∥β − γ∥2 ,∀γ ∈ W. Thus, by definition

2ℜ (⟨β − α|γ⟩) + ∥α− γ∥2 ≥ 0,∀γ ∈ W.

As α ∈ W =⇒ α− γ ∈ W holds for all vectors in W . Consider such arbitrary r ∈ W,

2ℜ ⟨β − α|r⟩+ ∥r∥2 ≥ 0.

If γ ∈ W and γ ̸= α, we may thus specify

r = −⟨β − α|α− γ⟩
∥α− γ∥2

(α− γ).

From which it follows that

2ℜ
(〈

β − α

∣∣∣∣−⟨β − α | α− γ⟩
∥α− γ∥2

(α− γ)

〉)
+

∥∥∥∥⟨−β − α | α− γ⟩
∥α− γ∥2

(α− γ)

∥∥∥∥2 ≥ 0

⇒ −2ℜ

(
⟨β − α | α− γ⟩

∥α− γ∥2
⟨β − α | α− γ⟩

)
+

〈
⟨β − α | α− γ⟩

∥α− γ∥2
(α− γ)

∣∣∣∣ ⟨β − α | α− γ⟩
∥α− γ∥2

(α− γ)

〉
≥ 0

⇒ −2 · |⟨β − α | α− γ⟩|2

∥α− γ∥2
+

⟨β − α | α− γ⟩
∥α− γ∥2

· ⟨β − α | α− γ⟩
∥α− γ∥2

· ⟨α− γ | α− γ⟩ ≥ 0

⇒ −2 · |⟨β − α | α− γ⟩|2

∥α− γ∥2
+

|⟨β − α | α− γ⟩|2

∥α− γ∥4
· ∥α− γ∥2 ≥ 0

⇒ −2 · |⟨β − α | α− γ⟩|2

∥α− γ∥2
+

|⟨β − α | α− γ⟩|2

∥α− γ∥2
≥ 0

⇒ −|⟨β − α | α− γ⟩|2

∥α− γ∥2
≥ 0

which is true only if
⟨β − α|α− γ⟩ = 0.

Therefore β − α is perpendicular to every vector in W.
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Now we prove uniqueness. Suppose there is two best approximation a, a′. WTS: a = a, i.e.,
⟨a− a′|a− a′⟩ = 0. Thus,

⟨a− a′|a− a′⟩ = ⟨β − β + a− a′|a− a′⟩
= ⟨β − a′|a− a′⟩ − ⟨β − a|a− a⟩
= 0− 0 = 0.

Lastly, sps the W is finite-dimensional subspace of V. Then, by Gram-Schmidt W has an
orthogonal basis, {α1, . . . , αk} . Sps β /∈ W, for otherwise the result is trivial. Then, the set
{α1, . . . , αk, β} is linearly independent so we may apply Gram-Schmidt. Applying so yields
that β − α is orthogonal to vectors in Span {α1, . . . , αn} , i.e., ∀w ∈ W. If γ ̸= α is in W, it
follows that

∥β − γ∥ > ∥β − α∥ .

Definition 5.6.2 (Orthogonal Projection). Let {α1, . . . , αm} be an orthonormal basis forW .
The linear operator E ∈ L(V ) defined by the best approximations is called the orthogonal
projection of β onto W .

E (β) =
n∑

i=1

⟨β|αi⟩αi.
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Exercise. The orthogonal operator E (β) has the following properties. Prove that

1. E is linear

2. E is a projection (E2 = E)

3. range(E) = W.

Definition 5.6.3 (Orthogonal Compliment). The orthogonal complement of a subspace
W ⊆ V is a subspace

W⊥ = {v ∈ V s.t. ⟨v, w⟩ = 0, ∀w ∈ W} .

Theorem 5.6.3.1 (β 7→ β−E(β)). Let V be an inner product space, W a finite-dimensional
subspace of V , and E the orthogonal projection of V on W . The mapping

β 7→ β − E(β)

i.e.,

(I − E) (β) = β −
n∑

i=1

⟨β|αi⟩αi

is the orthogonal projection of V on W⊥.

Proof. Let β be an arbitrary vector in V . Then, it follows from the properties of best
approximations that β − E(β) ∈ W⊥ and ∀γ ∈ W⊥,

β − γ = E(β) + (β − E(β)− γ).

Since E(β) ∈ W , and β − E(β)− γ ∈ W⊥, from the Pythagorean Theorem we get:

∥β − γ∥2 = ∥E(β)∥2 + ∥β − E(β)− γ∥2 ≥ ∥β − (β − E(β))∥2.
with strict inequality when γ ̸= β−E(β). Therefore, β−E(β) is the best approximation

to β by the vectors in W⊥.
It turns out that we are able to calculate the orthogonal projection of V onto W⊥ using

our function E:

I − E is the orthogonal projection of V onto W⊥, and range(I − E) = W⊥.

Remarks 5.6.3.1.1. Let W be a plane through the origin in R3. Geometrically, one sees
that W⊥ is the line centred at the origin normal to the plane. In a similar fashion, the
orthogonal complement to this line is the original plane, so in this case (W⊥)⊥ = W . It
turns out that this is true more generally, as we shall see.
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Ex.
E(α) = α ∀α ∈ W (I − E)(α) = α ∀α ∈ W⊥

E(α) = 0 ∀α ∈ W⊥ (I − E)(α) = 0 ∀α ∈ W

Theorem 5.6.3.2. Let W be a finite-dimensional subspace of a finite-dimensional inner
product space V , and let E be the orthogonal projection of V on W . Then E is a projection
of V onto W , W⊥ is the nullspace of E, and

V = W ⊕W⊥.

Proof left as an exercise:

• Step 1: Show that E is a projection.

• Step 2: Show that E is a linear operator.

• Step 3: Show W⊥ is the nullspace of E.

• Step 4: Show that W ⊕W⊥ is a direct sum.

Corollary 5.6.3.2.1. Let W be a finite-dimensional subspace of an inner product space V ,
and let E be the orthogonal projection of V onto W . Then I − E is a projection of V onto
W⊥, and W is the nullspace of I − E.
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Corollary 5.6.3.2.2 (Bessel’s Inequality). Let {α1, · · · , αn} be an orthogonal set of non-
zero vectors in an inner product space V . If β is any vector in V , then

n∑
i=1

|⟨β | αk⟩|2

∥αk∥2
≤ ∥β∥2

with equality if and only if

β =
n∑

i=1

⟨β | αk⟩
∥αk∥2

αk.

Proof. Let

γ =
n∑

i=1

⟨β | αk⟩
∥αk∥2

αk, and δ = β − γ. Then, β = γ + δ.

By definition of γ, ⟨δ | γ⟩ = 0.
Hence, by the Pythagorean Theorem,

∥β∥2 = ∥γ∥2 + ∥δ∥2.

By definition of γ,

∥γ∥2 =
n∑

i=1

|⟨β | αk⟩|2

∥αk∥2
≤ ∥γ∥2 + ∥δ∥2 = ∥β∥2,

with equality if and only if ∥δ∥2 = 0.
The equality part follows immediately.
It now suffices to prove that

∥γ∥2 =
n∑

i=1

|⟨β | αk⟩|2

∥αk∥2
.

The remainder of the proof is left as an exercise.
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Ex.Let W = span{(1,−1)} be a subspace of R2. Let E : R2 → R2 be the orthogonal
projection of R2 onto W .

1. Find a formula for E(x1, x2).

2. β = {e1, e2}. Find [E]β

3. Find W⊥

4. Let β′ = {(1,−1) , (1, 1)}, Solve for E.

Solution. 1. Consider

E (x1, x2) =
1∑

k=1

⟨(x1, x2) |αi⟩
∥αi∥2

· αi

=

(
1

2
x1 −

1

2
x2,−

1

2
x+

1

2
x2

)
.

2. Note that

E(e1) = E(1, 0) = (
1

2
,
−1

2
)

E(e2) = E(0, 1) = (
−1

2
,
1

2
)

=⇒ [E]β =

[
1
2

−1
2

−1
2

1
2

]
.

It is noteworthy that [E]β = [E]2β = [E]∗β = [E∗]β .
3. Observe that

v = (x1, x2) ∈ W⊥ ⇐⇒ (x1, x2) satisfies ⟨(x1, x2) | (1,−1)⟩ = 0

⇐⇒ (x1, x2) is a solution to x1 − x2 = 0

⇐⇒ x1 = x2 =⇒ w⊥ = Span ({(1, 1)}) .

4. Note that

E (1,−1) =

(
1

2
− −1

2
,
−1

2
+

−1

2

)
= (1,−1)

E (1, 1) = (0, 0)

=⇒ [E]β′ =

[
1 0
0 0

]
.

■
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5.7 The Least Squares Problem V = Rn s.t. n < ∞
Consider a data set

{(1, 2) , (2, 2) , (3, 4)} .

Observe that there is not a line that passes through these three point. As one can attempt to

solve for y = bx+ a s.t.


2 = b+ a

2 = 2b+ a

4 = 3b+ a

=⇒

1 1
1 2
1 3

[a
b

]
=

22
4

 . Which is an inconsistent

system of equations. Let e denote the difference between our estimation and the actual data,
i.e., yi − ŷi. And so we have

e =

e1e2
e3

 .

Note that

∥e∥2 =

√√√√ n∑
i=1

|ei|2 ⇐⇒ (∥e∥2)
2 =

n∑
i=1

e2i .

This is what we call the least squares where ∥e∥ is the least squares error of the approxima-
tion. The line that minimizes the least squares error of the approximation is called the least
square approximation line.
Suppose we have a set of data

{(x1, y2) , . . . , (xn, yn)} .

Consider

A =


1 x1

1 x2
...

...
1 xn

 , x =

[
a
b

]
, c =


y1
y2
...
yn

 .

A quick computation shows that e = c − Ax. It follows that finding a line of best fit is
equivalent to fining a vector

x⃗ = (a, b) ∈ R2 s.t. ∥c− Ax⃗∥ ≤ ∥c− Ax⃗∥ ,∀x ∈ R2.
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Definition 5.7.1 (Least Squares Solutions). If A is an m × n matrix and b ∈ Rm, a least
squares solution of Ax = b is a vector x⃗ ∈ Rn such that

∥c− Ax⃗∥ ≤ ∥c− Ax∥ ,∀x ∈ Rn.

where ∥·∥ is induced by the standard inner production.

Theorem 5.7.1.1 (The Least Squares Theorem). Let A be an m × n matrix and b ∈ Rm.
Then Ax = b always has at least one least squared solution x̄. Moreover,

1. If x is a least square solution of Ax = b, then x is a solution of the system of equations
ATAx = AT b

2. A has linearly independent columns iff ATA is invertible. It follows from 1. that in
this case, the least squares solution of Ax = b is unique and is given by

x̄ =
(
ATA

)−1
AT b

Proof. Suppose we have a set of data with k − 1 explanatory variables, n observations, and
a dependent variable y:

{(x1,i, . . . , xk−1,i, yi)}ni=1 .

Thus, the model is
Ypopulation = Xpopulationβ + ε,

where ε is the noise. Consider a multiple regression model estimation thus built:

Ŷ = X̂β̂,

where X̂ ∈ Rn×k which records each of the observation; explicitly,

X :=


1 x1,1 . . . xk−1,1

1 x1,2 . . . xk−1,2

1
...

...
...

1 x1,n . . . xk−1,n

 ,

with β̂ ∈ Rk being the vector list of coefficient and intercept.

Let Y :=

y1...
yn

 be the vector recording the actual observed dependent variable.
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Then, define the least square residual,

∥u∥n =
∥∥∥Y − Ŷ

∥∥∥
n
=
∥∥∥Y − X̂β̂

∥∥∥
n
.

Clearly, the objective now is to minimize ∥u∥n .
Let LX̂ : Rk → Rn be a linear transformation such that β̂ 7→ Ŷ . Then, note that

range(LX̂) = column
(
X̂
)
= Span


1...
1

 , . . . ,

xk−1,1
...

xk−1,n


 .

Now to achieve the minimization, we want to find X̂β̂ satisfying∥∥∥Y − X̂β̂
∥∥∥ ≤ ∥Y − z⃗∥ , ∀z⃗ ∈ range(LX̂) = column

(
X̂
)
.

By theorem, best approximation exists and can be computed by its orthogonal projection,
the best approximation of Y onto column(X̂) is thus the orthogonal projection of Y onto

column
(
X̂
)
,

X̂β̂ = projcolumn(X̂)(Y ) = E(Y ).

Consider our X̂β̂. Note that

xT
i

(
Y − X̂β̂

)
=
〈
xT
i |Y − X̂β̂

〉
= 0,∀i

as xT
i ∈ column X̂, and Y − projcolumn(X̂)(Y ) = perpcolumn(X̂)(Y ).

From which it follows that

X̂T (Y − X̂β̂) = 0 we stack all of xT
i

=⇒ X̂TY − X̂T X̂β̂ = 0 associativity of matrix

=⇒ X̂TY = X̂T X̂β̂.

In particular, suppose X̂T X̂ is invertible, i.e., perfect-multicollinearity does not exists, then

β̂ =
(
X̂T X̂

)−1

X̂TY.
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Thus, back to our ex,

A =

1 1
1 2
1 3

 , b =

22
3

 .

To compute the line of best fit we solve

ATAx = AT .

That is,

[
1 1 1
1 2 3

]1 1
1 2
1 3

[a
b

]
=

[
1 1 1
1 2 3

]22
4


=⇒

[
3 6
6 14

] [
a
b

]
=

[
8
18

]
=⇒ a =

2

3
and b = 1.

Thus, we obtain ŷ = x+ 2
3
.

6 Linear Operator and Adjoint Operators

6.1 Linear Functionals

Definition 6.1.1 (linear functionals and fβ). A function f that maps a F vector space V
to a scalar c ∈ F is called a linear functional.

Given any inner product space V and fixed vector β, fβ is the linear functional defined
by:

fβ(α) = ⟨α, β⟩

Theorem 6.1.1.1 (Riesz Representation Theorem). Let V be a finite dimensional inner
product space and f be a linear functional on V. Then

∃!β ∈ V s.t. f(α) = ⟨α|β⟩ ,∀α ∈ V.
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Proof. Let {α1, . . . , αn} be an orthonormal basis of V. Let

β =
n∑

i=1

f(αi)ai

.

Claim. f = fα. It suffices to check fβ (αk) = f (αk) ,∀k.

fβ (αk) =
〈
αk|f(αi)ai

〉
=

k−1∑
i=1

f(αk) ⟨αk|αi⟩+ f(αk) ⟨αk|αk⟩+
n∑

i=k−1

f(αi) ⟨αk|αi⟩

= f(αk).

Now we prove uniqueness. Suppose ∃γ, β s.t. ⟨α|β⟩ = ⟨α|γ⟩ , ∀α. Then,

⟨α|β⟩ − ⟨α|γ⟩ = 0

=⇒ ⟨α|β − γ⟩ = 0

=⇒ ⟨β − γ|β − γ⟩ = 0

=⇒ β − γ = 0

=⇒ β = γ.

Remarks 6.1.1.1.1 (Necessity of Finite-Dimensionality). It is possible for us to prove that
the Riesz Representation Theorem is not true for infinite-diemensional vector spaces. Let
the inner product be

⟨f |g⟩ =
∫ 1

0

(fg)(x)dx.

p. 75



MATB24: Eric Wu 6 LINEAR OPERATOR AND ADJOINT OPERATORS

6.2 Adjoints

Theorem 6.2.0.1 (Adjoints exists for finite-dimensional vector spaces). For any linear op-
erator T on a finite-dimensional inner product space V,

∀T ∈ LV, ∃!T ∗ ∈ L(V ) s.t. ∀α, β ∈ V, ⟨Tα|β⟩ = ⟨α|T ∗β⟩ ,

where T ∗ is the adjoint of T.

Proof. Let β be any vector in V with T ∈ L(V ).
Let f be the function such that α 7→ ⟨Tα|β⟩ , i.e., f(α) = ⟨Tα|β⟩ . Note that f is a linear
functional. By Riesz Representation Theorem,

∃!β′ s.t. ⟨α|β′⟩ = f(α) = ⟨Tα|β⟩ .

Which is true ∀α ∈ V. Let T ∗ : β 7→ β′. Then, T ∗β = β′. Thus,

⟨α|β′⟩ = ⟨α|T ∗β⟩ = f (α) = ⟨Tα|β⟩ .

Now we prove linearity and uniqueness of T ∗. If dim(V ) = 0, then all linear transforma-
tions are the same; thus suppose dim(V ) > 0. Then,

⟨α|T ∗
1 β⟩ = ⟨α|T ∗

2 β⟩
=⇒ ⟨α|T ∗

1 β⟩ − ⟨α|T ∗
2 β⟩ = 0

=⇒ ⟨β|T ∗
1 β − T ∗

2 β⟩ = 0,∀α, β ∈ V.

=⇒ ⟨T ∗
1 β − T ∗

2 β|T ∗
1 β − T ∗

2 β⟩ = 0,∀β ∈ V

=⇒ T ∗
1 = T ∗

2 .

Thus, T ∗ is unique. Now linearity is left as an exercise.

Definition 6.2.1 (Adjoint). Let T be a linear operator on an inner product space V . Then
we say that T has an adjoint on V if there exists a linear operator T ∗ on V such that

⟨Tα | β⟩ = ⟨α | T ∗β⟩ ∀α, β ∈ V.

(Note that if V is not finite dimensional, then T ∗ may not exist.)

Proposition 6.2.1.1 (Properties).

1. If an adjoint exists, then it is unique

2. The adjoint depends on T and definition of ⟨·|·⟩ .

3. If V is finite dimensional, then an adjoint always exists. Note that the converse does
not hold.
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Theorem 6.2.1.2 (Matrix Representations of linear transformations with respect to Or-
thonormal Bases). Let T ∈ L(V ) and suppose β = {α1, . . . , αn} is an orthonormal basis for
V. Let A = [T ]β = (Akj) , where 1 ≤ k, j ≤ n then,

Akj = ⟨Tαj|αk⟩ , ∀k, j ∈ [1, n] ∩ N.

Theorem 6.2.1.3 (Matrix Representation of Adjoints wrt Orthonormal Basis). Let V ∈
L (V ) and β be any ordered orthonormal basis {α1, . . . , αn} . Let [T ]β = (Akj) then

[T ∗]β =
(
Ajk

)
= (⟨αj|T ∗αk⟩) = [T ]∗β .

(The conjugate transpose of A), i.e., the matrix representation for T ∗ given the ordered basis
β is the conjugate transpose of the matrix representation for T using the same basis.

Proof. Let A = [T ]β and B = [T ∗]β . Then,

Ajk = ⟨Tαk|αj⟩ and Bkj = ⟨T ∗αj|αk⟩

But
Bkj = ⟨αk|T ∗αj⟩ = ⟨Tαk|αj⟩ = Ajk.

Ex. Consider A =

[
2 1 + i
i 3− i

]
. Compute A∗.

Solution.

A∗ =

[
2 i

1 + i 3− i

]
=

[
2 −i

1− i 3 + i

]
.

■

Corollary 6.2.1.3.1 ((T ∗)∗ = T ). Let V be a finite-dimensional vector space and T ∈ L (V ) ,
then

(T ∗)∗ = T.

Proof. As exercise.

Remarks 6.2.1.3.1 (Orthonomral basis is required). If β is not an orthonormal basis, then
the matrix representation of T ∗ [T ∗]β is not necessarily equal to the conjugate transpose of

the matrix representation of T ,i.e.,
(
[T ]β

)∗
̸= [T ∗]β necessarily.

Definition 6.2.2 (Self Adjoint - Hermition). A linear operator T ∈ L (V ) is self adjoint or
Hermition if

T = T ∗ (A ∈ Fn×n;A = A∗) .
The matrix representation of an inner product is hermitian matrix. Thus, its name hermitian
inner product spaces.

p. 77



MATB24: Eric Wu 6 LINEAR OPERATOR AND ADJOINT OPERATORS

6.3 Pauli Matrices

It is well known that observables (quantum properties that we can measure) in quantum
mechanics are all represented using Hermition matrices. The Pauli Matrices are a special
set of Hermitian matrices in C2×2 that are connected with the “angular momentum” relations
in quantum mechanics

Definition 6.3.1 (Pauli Matrices). There are four Puali Matrices

1. I = (σ0) =

[
1 0
0 1

]

2. X = (σ1) =

[
0 1
1 0

]

3. Y = (σ2) =

[
0 i
−i 0

]

4. Z = (σ3) =

[
1 0
0 −1

]
Proposition 6.3.1.1 (Properties of Pauli Matrices). The Pauli Matrices have some very
interesting properties.

XY = −iZ, Y Z = −iX, ZX = −iY

Y X = iZ, ZY = iX, XZ = iY

Also,
XX = Y Y = ZZ = I.

Thus,
{±X,±Y,±Z,±I,±iX,±iY,±iZ,±iI}

form a group with respect to Matrix Multiplication.

Remarks 6.3.1.1.1. Pauli Matrices can send a message that is resistant to probabilistic
attack. As we shall see, Pauli Matrices are self adjoint and unitary.

Definition 6.3.2 (Preserving Inner Products and Vector Isomorphism). Let V and W be
inner product spaces over F, T ∈ L(V,W ), then T preserves inner products if

⟨Tα|Tβ⟩β = ⟨α|β⟩ ,∀α, β ∈ V.

Note a vector isomorphism of V onto W is an inner product isomorphism T of V onto W,
which preserves the inner products.
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6.4 Unitary Operator

Definition 6.4.1 (Unitary Operator). A unitary operator on an inner product space is
an (inner product) vector isomorphism of the space to itself. That is,

T ∈ L(V ) s.t. ⟨Tα|Tβ⟩ = ⟨α|β⟩ , ∀α, β ∈ V.

Definition 6.4.2 (Orthogonal and Orthonormal Matrices).
A matrix A ∈ Rn×n is orthogonal (real) if AAT = ATA = In.

A matrix A ∈ Cn×n is orthonormal (complex) if AA∗ = A∗A = In.

Remarks 6.4.2.0.1. Orthoonal and Orthonormal Matrices are unitary operators acting on
Mn×1 (R) and Mn×1 (C) respectively.

Ex.

1. Identity Matrix/Operator :

[
1 0
0 1

]
2. Pauli Matrices.

3. diag
(
eiθ1 , . . . , eiθn

)
, where θj ∈ [0, 2π).

4. Rotation Matrix.

Proof.
I(I)∗ = II = I.

Now we show
diag

(
eiθ1 . . . , eiθn

)
·
[
diag

(
eiθ1 . . . , eiθn

)]∗
= I

The given = diag
(
eiθ1 . . . , eiθn

)
· diag

(
eiθ1 . . . , eiθn

)
= diag

(
eiθ1 . . . , eiθn

)
· diag

(
e−iθ1 . . . , e−iθn

)
= diag

(
eiθ1e−iθ1 , . . . , eiθne−iθn

)
= diag (1, . . . , 1)

= I.
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Theorem 6.4.2.1 (Characterizations of Unitary Operators for Finite Dimensional Vector
Spaces).

1. U is unitary

2. UU∗ = I = U∗U

3. U is inner-product preserving:

⟨Ux, Uy⟩ = ⟨x, y⟩ for all x, y ∈ V

4. U is norm preserving:
∥Ux∥ = ∥x∥ for all x ∈ V

5. If {α1, . . . , αn} is an orthonormal basis for V , then {Uαn, . . . , Uαn} is also an orthonormal
basis for V .

6. If β is any orthonormal basis for V , then the columns of [U ]β are orthonormal in Fn

with the standard inner product.

7. If β is any orthonormal basis for V , then the rows of [U ]β are orthonormal in Fn with
the standard inner product.

Proof. 1. ⇐⇒ 2.
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6.5 Quantum Application

A quantum system is represented using a complete inner product space, also known as a
Hilbert Space. For finite dimensional systems, a finite inner product space is a complete
inner product space. You will discuss this more in a real analysis class. Every state that the
quantum state can be in is represented using a unit vector. Ex. The spin of an electron.

e1 = (1, 0) = “|0⟩′′represents the spin up of an electron

e2 = (0, 1) = “|1⟩′′represents the spin down of an electron

A system state could be

α =
1√
2
(e1 + e2) =

1√
2
(|0⟩+ |1⟩) .

This is known as the quantum superposition of |0⟩ and |1⟩. Every quantum operation maps a
state of a system to a new state. Let a quantum operation be represented using the following
matrix:

U =
1√
2

[
1 1
1 −1

]
, U |0⟩ = u

[
1
0

]
=

[
1/
√
2

1/
√
2

]
=

1√
2
(|0⟩+ |1⟩) = α.

Since every state is represented using a unit vector, any quantum operator U ∈ L (V ) is norm
preserving. Therefore, it is a unitary operator. Since unitary operators satisfy the property
that UU∗ = I, we can state that “all quantum operations are reversible.

6.6 Normal Operator

Definition 6.6.1 (Normal Operators). Let V be a finite-dimensional inner product space
and T ∈ L (V ) . Then, T is normal if it commutes with it’s adjoint:

TT ∗ = T ∗T.

p. 81



MATB24: Eric Wu 6 LINEAR OPERATOR AND ADJOINT OPERATORS

Theorem 6.6.1.1 (Basic Properties of Normal Operators). Let V be a finite-dimensional
inner product space and T be a normal operator on V .
Then

1. ∥Tα∥ = ∥T ∗α∥

2. for any scalar c, (T − cI) is also normal

3. (T − cI)∗ = T ∗ − cI

4. T has a eigenvector α with eigenvalue c if and only if T ∗ has characteristic vector α
with characteristic value c.

From 1,2,3,
∥(T − cI)α∥ = ∥(T ∗ − c̄I)α∥ .

It follows that
Tα = cα ⇐⇒ T ∗α = c̄α.

Definition 6.6.2. A Matrix A ∈ Cn×n is normal if AA∗ = A∗A.

Ex.

1. Identity

2. Hermition Matrices

3. Unitary Matrices

Theorem 6.6.2.1 (Uppe Triangular Matrices are Normal iff they are diagonal). Let V be
a finite-dimensional inner product space, T ∈ L (V ) , and β be an orthonormal basis for V.
Suppose that the matrix A = [T ]β is upper triangular, then T is normal iff A is a diagonal
matrix.

Proof. Since β is an orthonormal basis, A∗ = [T ∗]β . Suppose A is diagonal. Then, A =
diag (a11, . . . , ann) and A∗ = diag (ā11, . . . , ¯ann) .
Thus, [TT ∗]β = AA∗ = diag (a11ā11, . . . , ann ¯ann) .
Similarly,

[T ∗T ] = diag (a11ā11, . . . , ann ¯ann) .

Thus, [TT ∗]β = [T ∗T ]β . Thus, TT
∗ = T ∗T.

Now suppose T is normal and A = [T ]β . Then, A
∗ = [T ∗]β . If A is upper triangle and

β = {v1, . . . , vn} , then

[T (v1)]β =


a11
0
...
0

 =⇒ T (v1) = a11 =⇒ T ∗(v1) = ā11v1.
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From which it follows that

[T ∗(v1)]β =

ā11...
0

 =⇒ a1j = 0,∀j ∈ {2, . . . , n} .

Repeating this argument forces all of the diagonal entries to 0. Thus, A is diagonal.

Theorem 6.6.2.2 (Orthogonal Complements of Invariant Subspaces are Invariant under
Adjoints). Let V be an finite-dimensional inner product space ad that T ∈ V . Sps W is a
subspace of V which is invariant under T . Then, W⊥ is invariant under T ∗, i.e.,

(w ∈ W =⇒ T (w) ∈ W ) =⇒
(
w ∈ W⊥ =⇒ T ∗ (w) ∈ W⊥) .

Proof. Let α ∈ W and β ∈ W⊥. Suppose Tα ∈ W. Then,

⟨Tα|β⟩ = 0.

Thus,
⟨α|T ∗β⟩ = 0 as ⟨Tα|β⟩ = ⟨α|T ∗β⟩ .

Thus, T ∗β ∈ W⊥.

Theorem 6.6.2.3 (Schur’s Decomposition). Let V be a finite-dimensional complex inner
product space and let T be any linear operator on V . Then there is an orthonormal basis
for V in which the matrix of T is upper triangular.

Proof. We prove by induction. Base case: let dim (V ) = 1. Then,

[T ]β = [a11] , which is upper triangular.

n+1 case: V is an n+1 dimensional complex vector space. Assume that if W is a complex
inner product space of dimension n, there exists an orthonormal basis such that the matrix of
T is upper triangular. As T is an operator on a complex vector space, there exists a non-zero
vector such that Tv = cv. Additionally, if α = v

∥v∥ , then, Tα = cα. Let W = Span ({α}) .
Let W⊥ = Span ({v1, . . . , vn}) . Let β = {α, v1, . . . , vn} . Then,

[T ]β =

c V W

0 Ŵ Ŵ

0 Ŵ Ŵ

 .

Let SŴ : Span ({v1, . . . , vn}) → Span ({v1, . . . , vn}) be the linear transformation defined

using Ŵ in basis
β̂ = {v1, . . . , vn} .
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By our inductive hypothesis, there exists a basis β̂′ = {α1, . . . , αn} s.t. [SŴ ]β̂′ is upper

triangular. Let P be the change of basis matrix from β̂ → β̂′. Then,

[SŴ ]β̂ = P−1 [SŴ ]P =⇒ [SŴ ]β̂′ = P [SŴ ]β̂ P
−1 = PŴP−1.

Notice β′ = {α, α1, . . . , αn} is an orthonormal basis for V. Additionally, the matrix

[
1 0
0 P

]
is the change of basis matrix from β → β′. It follows that [T ]β =

[
1 0
0 P

]−1 [
T
]
β′

[
1 0
0 P

]
.

Thus,

[T ]β′ =

[
1 0
0 P

]
[T ]β

[
1 0
0 P−1

]
=

[
1 0
0 p

] [
c v
0 w

] [
1 0
0 p−1

]
=

[
c p−1v
0 w

]
.

Thus, the matrix is upper triangular.

Remarks 6.6.2.3.1. Shcur’s Decomposition tells us that when V is a complex inner product
space, there exists an orthonormal basis β s.t. T is upper triangular. We say that T unitarly
triangalizable. This leads to the following definition.

Definition 6.6.3 (Unitarily Diagonalizable). Let V be a finite-dimensional vector space,
T ∈ L(V ). T is unitarily diagonalizable if there exists an orthonormal basis such that the
matrix representation of T with respect to this basis is diagonal.

Definition 6.6.4 (Unitary triangularizable and unitary diagonalizable matrices). A matrix
A is unitary upper triangularizable if there exists a unitary matrix P such that

A = P−1BP.

where B is upper triangular.
A matrix is unitary diagonalizable if there exists a unitary matrix P such that

A = P−1DP,

where D is a diagonal matrix.

Theorem 6.6.4.1 (Spectral Theorem for Normal Operators). Let V be a finite-dimensional
complex inner product space. Let T ∈ L(V ).

The following are equivalent:

1. T is unitarily diagonalizable

2. T is normal

Proof. Exc: 1 → 2. By Schur’s Deconposition, ∃ orthonormal basis s.t. [T ]β is upper trian-
gular. By our previous theorem, a matrix representation of a normal operator is triangular
implies that it is diagonal.
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Definition 6.6.5 (Spectrum of a Matrix). Given A ∈ Fn×n, the set of characteristic values
(eigenvalues of A) is called the spectrum of A, denoted by

σ (A) := {λ ∈ F s.t. ∃α ̸= 0, Aα = λα, } .
This implies that σ (A) ⊆ F, and σ (A) has at most n values.

Remarks 6.6.5.0.1. Let A and B be similar matrices. Then,

1. det (A) = det (B) , 2. trace (A) = trace (B) , 3.σ (A) = σ (B) .

Theorem 6.6.5.1 (Relationshop between the trance, the determinant and characteristic
values). Let A be n×n matrix with C and λ1, . . . , λn be the eigenvalues of A, repeating the
terms if there is algebraic multiplicity. Then,

1. trace (A) =
n∑

i=1

λi, 2. det (A) =
n∏

i=1

λi.

Theorem 6.6.5.2 (The spectrum of Unitary Operators on a complex inner product lies on
the unit circle). Let V be a complex inner product space and U ∈ L (V ) be unitary and |·|
be the modulus of a complex number. Then,

σ (U) ⊆ {λ ∈ C s.t. |λ| = 1} .
Proof. If Ux = λx, then, |λ| = 1. Note that

∥x∥ = ∥Ux∥
= ∥λx∥
= |λ| ∥x∥
=⇒ ∥x∥ − |λ| ∥x∥ = 0

=⇒ ∥x∥ (1− |λ|) = 0

=⇒ |λ| = 1 since ∥x∥ ≠ 0.

Theorem 6.6.5.3 (Spectral Theorem for Unitary Operators). Let U ∈ L(V ) be unitary.
Then an orthonormal basis β of unit vectors of V exists, such that

[U ]β = diag(eiθ)

where eiθ1 , . . . , eiθn are the characteristic values of U .

Theorem 6.6.5.4 (Unitary Similarity). Let U ∈ Fn×n be a unitary matrix. Then there
exists a unitary matrix V ∈ Fn×n such that

V UV ∗ = diag(eiθ)

where eiθ1 , . . . , eiθn are the characteristic values of U including multiplicities. We say that U
is unitarily similar to the diagonal matrix.

Remarks 6.6.5.4.1. All quantum operators are unitarily similar to a diagonal matrix.
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7 Polynomials

7.1 Polynomials

Definition 7.1.1 (Polynomials). Let F[x] := the set of polynomials with coefficients in F.
Let

f(x) = c0 + c1x
1 + . . .+ ckx

k, g(x) = a0 + . . .+ anx
n ∈ F[x].

We define the degree of f , denoted deg(f), to be the number k, where ck ̸= 0. If ∄k > 0
such that ck ̸= 0, then deg(f) = 0. We define g(x) = f(x) if all the coefficients of f and g
are equal (i.e. ai = ci for all 0 ≤ i ≤ k).

Furthermore, if ck = 1, then we say f is .

Remarks 7.1.1.0.1 (Polynomials v.s. Polynomial functions). It is important to note that
our definitions of polynomials are purely formal, and are not to be confused with polynomial
functions.

For ex, the polynomial function f : R → R defined by the rule x 7→ x2 is not the same as
the polynomial x2 ∈ F[x]. The former is a function, whereas the latter is merely a symbol.

Definition 7.1.2 (Applying Polynomials to Operators: f(T ) and f(A)). Let f = c0+ c1x+
· · ·+ ckx

k ∈ F [x] , T ∈ L (V ) and A ∈ Mn×n (F) then,

f(T ) = c0I + c1T + . . . ckT
k =

k∑
i=0

ciT
i

f(A) = c0I + c1A+ . . . ckA
k =

k∑
i=0

ciA
i.

Ex. A =

[
2 1
−1 3

]
. f(x) = x2 − x+ 2. Then,

f(A) =

[
2 1
−1 3

] [
2 1
−1 3

]
−
[
2 1
−1 3

]
+ 2

[
1 0
0 1

]
.

Ex. Let T : R2 → R2 be defined by T (x1, x2) = (x2, 3x1−x2). Find f(T )where f(x) = x2−1.

Solution.

f(T )(x1, x1) =
(
T 2 − I

)
(x1, x2)

= (2x1 − x2,−3x1 + x2) .

■
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7.2 Polynomial Ideals

We now discuss some factorization results on polynomials. As we shall see later, these
results will be helpful in the quest of finding nice matrix representation. There are two main
factorization results that we shall discuss: the Division Algorithm for Polynomials and the
Fundamental Theorem of Algebra. Then, we will provide a new alternative definition for
polynomial ideals.

Theorem 7.2.0.1 (Division Algorithm for polynomials). If f, d ∈ F [x] and d ̸= 0, then
∃!q ∈ F [x] s.t.

1. f = dq + r

2. either r = 0 ∨ deg(r) < deg(d).

If the remainder r = 0, we say

1. d divides f

2. f is a multiple of d

3. q is the quotient of f and d.

Corollary 7.2.0.1.1 (Fundamental Remainder Theorem). Let c ∈ F. Then f(x) is divisible
by x− c if and only if f(c) = 0.
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Theorem 7.2.0.2 (Division Algorithm for Integers). If f ∈ Z+ ∪ {0} and d ∈ Z+, then a
unique q, r ∈ Z+ ∪ {0} exists such that

1. f = dq + r

2. either r = 0 or |r| < |d|

If the remainder r = 0, we say

1. d divides f

2. f is a multiple of d

3. q is the quotient of f and d

Ex. Let f = 16 and d = 3. Solve for q and r s.t. f = qd+ r.

Solution. Note that
16 = 5(3) + 1 =⇒ q = 5 and r = 1.

■

Ex. Let f(x) = x2 + x + 1 and d(x) = x − 1. Solve for q(x) and r(x) s.t. f(x) =
q(x)d(x) + r(x).

Solution. Noe that
x2 + x+ 1 = (x+ 2)(x− 1) + 3.

■

Ex. f(x) = x4−2x3−2x2−2x−3 and d(x) = x3+6x2+7x+1. Solve for q(x) and r(x) s.t. f(x) =
q(x)d(x) + r(x).

Solution. Note that

x4 − 2x3 − 2x2 − 2x− 3 = (x− 8)(x3 + 6x2 + 7x+ 1) + (39x2 + 53x+ 5).

■
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Definition 7.2.1 (Irreducible and Prime Polynomials ). A function f ∈ F[x] is reducible
over F if two polynomials g, h ∈ F[x] exist such that

1. deg(g) ≥ 1 and deg(h) ≥ 1

2. f = gh

Otherwise f is irreducible over F.

A polynomial p ∈ F[x] is a prime polynomial if it

1. p ̸= 0

2. ∄f ∈ F[x] such that fp = 1

3. If p | ab, then p | a or p | b

Remarks 7.2.1.0.1 (Irreducble v.s. Prime). A non-scalar irreducible polynomial is a prime
polynomial.

In higher-level algebra courses, you may explore the differences between being irreducible
and prime, but we do not explore this here.

Theorem 7.2.1.1 (Fundamental Theorem of Arithmetic). If n ∈ Z then a unique set of
positive primes exist such that

n = upn1
1 . . . pnk

k

where u = −1 if n is negative and otherwise 1.

Theorem 7.2.1.2 (Prime Factorization of Polynomials). Let f ∈ F[x] be a non-scalar
polynomial. Then there are unique distinct prime polynomials p1, . . . , pn ∈ F[x], positive
integers e1, . . . , en, and scalar a such that

f = ape11 pe22 · · · penn .

Theorem 7.2.1.3 (Fundamental Theorem of Algebra). Every non-zero polynomial in C[x]
factors completely; i.e.,

∃c1, . . . , ck ∈ C and ∃r1, . . . , rk ∈ Z such that

f(x) = (x− c1)
r1(x− c2)

r2 · · · (x− ck)
rk

The roots of f(x) are c1, . . . , ck and the respective multiplicity is r1, . . . , rk.

Remarks 7.2.1.3.1 (Prime Factorization of Complex Polynomials). An immediate corollary
of the fundamental theory of algebra is that the only prime polynomials in C [x] are the linear
factors of the form (x− c) which have degree 1. This is not necessarily true for polynomial
over R. To better understand this, consider the following ex.
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Ex. Let f(x) = x3 − 1. Find the prime factors of f(x) over R and C.

Solution. Over R.

x3 − 1 = (x− 1)(x2 + x+ 1) =⇒ x = 1 ∨ x =
−1±

√
12 − 4

2
=

−1

2
+

√
3

2
i.

But the latter is not in R. Thus, the primary decomposition of f(x) is

(x− 1)
(
x2 + x+ 1

)
.

Over C.

x3 − 1 = (x− 1)

(
x−

(
−1

2
+

√
3

2
i

))(
x−

(
−1

2
−

√
3

2
i

))
■

Theorem 7.2.1.4 (Alternate Characterizations of Polynomial Ideals). Let M ⊂ F [x] . The
following are equivalent:

1. M is an ideal

2. M is a nonempty subset such that:

(a) if f ∈ F [x] and g ∈ M, then, fg = gf ∈ M

(b) if f, g ∈ M, then, f + g ∈ M.

Corollary 7.2.1.4.1 (Polynomial Ideals are Subspaces). Let M be an ideal of F [x] . Then,
M is a subspace of F [x] .

Proof. Let c ∈ F and f, g ∈ M. Note c ∈ F [x] . Thus,

cf ∈ M and cf + g ∈ M.

Thus, by the characterization by closure theorem, M is a subspace.

Definition 7.2.2 (Finitely Generated Polynomial Ideal). Let D = {d1, . . . , dn} ⊆ F [x] .
Then, the ideal generated by D is the set

F [x]D = {f1d1 + · · ·+ fndn s.t. fi ∈ F [x]}

Definition 7.2.3 (Principal Ideal). If D contains only a single element d ∈ F [x] then the
ideal M generated by d is called a principal ideal,

M = F [x] d = {fd s.t. f ∈ F [x]} .
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Ex. d(x) = x2. The principal ideal C [x] d is the set of all polynomials that have x2 as a
factor.

C [x]x2 =
{
x2lx2 + ix3 + . . .

}
.

Ex. Show that F [x] is a principal ideal. What is the generator.

Solution.
F [x] = F [x] 1

Note that if f ∈ F [x] , then (f · 1) (x) = f(x),∀x. Thus, f ∈ F [x] · 1. ■

Ex. Let d1(x) = x+ 2, d2(x) = x2 + 8x+ 16. Let M = F[x]d1 + F[x]d2.
What is interesting about this exis that M = F[x].

1

4
d2(x)−

1

4
(x+ 6)d1 = 1 ∈ M

∴ the constant function 1 ∈ M

=⇒ F[x] = F[x] · 1 ⊆ M ⊆ F[x]

∴ M = F[x]

M is the principal ideal generated by 1.

Theorem 7.2.3.1 (F [x] is a Principal Ideal Domain). Let M be a non-zero ideal in F [x] ,
then exists a unique monic polynomial d ∈ F [x] s.t. M is the principal ideal generated by
d, i.e., M = F [x] d.

Proof. Left as an exercise.

Definition 7.2.4 (GCD of Polynomials). Let p1, . . . , pn ∈ F[x]. A monic polynomial d ∈
F[x] such that:

1. d ∈ F[x]({p1, . . . , pn}) = F[x]p1 + · · ·+ F[x]pn

2. d divides each of the pi

3. d is divisible by every polynomial which divides each of p1, . . . , pn

is called the greatest common divisor (gcd) of p1, . . . , pn.
We say p1, . . . , pn are relatively prime if gcd(p1, . . . , pn) = 1.
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Remarks 7.2.4.0.1 (Problem with definition). The careful reader may note some strange
things about this definition:

1. How do we know d exists?

2. We referred to d as THE greatest common divisor despite not knowing that d is unique.
Is d indeed unique?

We now make amends to these holes, showing that the greatest common divisors do
indeed exist and that they are unique.

Theorem 7.2.4.1 (The GCD is the unique monic generator). Let p1, . . . , pn, d ∈ F [x] . The
following are equivalent:

1. d is the unique monic generator of F [x] ({p1, . . . , pn})

2. d is a gcd of p1, . . . , pn.

Definition 7.2.5 (Te Euclidean Algorithm). Suppose you are given a and b.WLOF, assume
a > b. The following step compute the gcd,

1. set f = a, d = b then solve for p, r s.t. f = qd+ r.

2. while r ̸= 0 set f = d, d = r and solve for q, r s.t. f = qd+ r.

3. When r = 0, gcd (a, b) = d from the last iteration.

Ex. Find gcd (20, 15) .

Solution.

20 = 1× 15 + 5

=⇒ 15 = 3× 5 + 0

=⇒ gcd (20, 15) = 5.

■

Definition 7.2.6 (Euclidean Algorithm for Polynomials). Given f1 and f2. WLOG, let
deg(f1) ≥ deg(f2).

1. Set f = f1, d = f2, then solve for q, r such that f = qd+ r.

2. While r ̸= 0, set f = d, d = r and solve for q, r such that f = qd+ r.

3. When r = 0, gcd(a, b) = a−1
k d where qk is the lead coefficient of d from your last

iteration.

p. 92



MATB24: Eric Wu 7 POLYNOMIALS

Ex. Let d1 = x3 + 2x2 − x− 2 and d2 = x2 + 2x+ 1. What is the gcd(d1, d2)?

x3 + 2x2 − x− 2

x2 + 2x+ 1
= x+ 0

x3 + 2x2 − x− 2 − (x3 + 2x2 + x) = −2x− 2

So we write:

d1(x) = x · d2(x) + (−2)(x+ 1) ⇒ gcd(d1, d2) = gcd(d2, r)

Now divide:
x2 + 2x+ 1

x+ 1
= x

2
+ 1

2

x2 + 2x+ 1 − (x2 + 2x+ 1) = 0

We conclude that gcd(d1, d2) = x+ 1.

The only property that stops polynomials from being a field is the lack of a multiplicative
inverse. Note that this is the same property that stops the integers from having a multi-
plicative inverse. As we discussed in the first lecture, there were two ways we were able to
create a multiplicative inverse.

1. Rational Numbers

2. Modular Arithmetic

Theorem 7.2.6.1. The set of rational functions,{
f (x) =

h (x)

g (x)
s.t. h(x), g(x) ∈ F [x] and g (x) ̸= 0

}
is a field.

Proof. Exercise.

In the first lecture we claimed this was true, but we shall now prove that it is true for integers
in such a way that the same result holds for polynomials.

As we discussed in the first week of lectures, the integers can be used to create a field
using modular arithmetic, but why? It is a result of it being a principal ideal domain. As
polynomials are also principal ideal domain, we can also use a similar argument to prove that
using modular arithmetic for polynomials also creates a field. Using the similar argument
will hopefully make it easier to follow. The argument relies on the following theorem.

Theorem 7.2.6.2. Let (R,+,×) be a principal ideal domain. Let a, b ∈ R, then there exist
a c, d ∈ R s.t.

ca+ db = gcd (a, b) .
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Proof. Let a, b ∈ R. Let I be the ideal generated by ab. As I is an ideal, there exists a c ∈ I
that generates I. Additionally, as I was generated by gcd (a, b) . Thus, gcd (a, b) ∈ I. Thus,
∃c, d s.t. ca+ db gcd (a, b) .

Theorem 7.2.6.3 (Creating a field from a Principal Ideal Domain). Let (R,+,×) be a
principal ideal domain and a ∈ R be a prime element. Then, R mod a forms a field.

Proof. see lecture notes.

7.3 Annihilating Polynomials

Remarks 7.3.0.0.1 (Defining Operators using Polynomials). Let T ∈ L (V ) where V is an
Fvector space. Given a polynomial

p(x) = c0 + . . .c kx
k ∈ F [x]

we can define the operator p(T ) = c0I + c1T + · · ·+ ckT
k.

Definition 7.3.1 (Annihilator). Let V be an F vector space, T ∈ L(V ). A polynomial p
annihilates T if p(T ) = 0.

Similarly, a polynomial p annihilates a square matrix A if p(A) = 0. The annihilator of
T , denoted M(T ), is the set of all polynomials in F[x] which annihilate T .

Proposition 7.3.1.1 (The set of annihilators is an ideal). Let T ∈ L (V ) . Consider the set
Ann(T ) = M (T ) := {f ∈ F [x] s.t. f(T ) = 0} .

1. It is a principal ideal of F [x] .

2. If V is a finite-dimensional vector space, then this ideal contains more than just the 0
map (i.e., it is nontrivial).

Proof. We show that M is an ideal of F [x] . Consider Z (x) = 0, ∀x ∈ V. Notice Z =
f(T ) s.t. f(x) = 0. Thus, f ∈ M. Let f, g ∈ M. Then, f(T ) = Z and g(T ) = Z. Thus,
(f + g) (T ) = f(T ) + g(T ) = Z + Z = Z. Thus, f + g ∈ M. Let f ∈ F [x] g ∈ M. Then,
g(T ) = Z. Thus, (fg) (T ) = f(T ) · g(T ) = f(T ) · Z = Z. Thus, fg ∈ M. Reacall that

dim (L (V, V )) = dimV × dimV. Thus
{
I, T, T 2, . . . , T n2

}
must be L.D., that is ∃ an scalar

such that an2T n2
+ an2−1T

n2−1 + · · · + a0I = Z. Let f(x) = an2xn2
+ · · · + a1x

1 + a0, then
f(T ) = Z.

Proposition 7.3.1.2. Let A ∈ Fn×n. Consider the set M = {f ∈ F [x] s.t. f(A) = 0},

1. M is a principal ideal of F [x]

2. If V is a finite-dimensional vector space, then this ideal is always non-zero.
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Definition 7.3.2 (Minimal Polynomial). The minimal polynomial for T is the unique monic
generator for the ideal

M(T ) = {f ∈ F [x] s.t. f(T ) = 0}

The minimal polynomial for a matrix A ∈ Fn×n is the unique monic generator for the ideal

M(A) = {f ∈ F [x] s.t. f(A) = 0}

Remarks 7.3.2.0.1. The minimal polynomial can be used to determine whether a matrix
or linear transformation is diagonalizable or triangularizable. This is the subject of the next
section. For now, we will focus on basic properties of the minimal polynomial and how to
compute it.

Theorem 7.3.2.1 (Alternate characterization of minimal polynomials). Let V be an F
vector space, T ∈ L (V ) , (A ∈ Fn×n) , p ∈ F [x] . The following are equivalent

1. p is the minimal polynomial for M (T ) (M (A))

2. p is a polynomial such that

(a) p is monic

(b) p(T ) = 0

(c) f(T ) = 0 =⇒ deg(f) ≥ deg(p).

Ex. Show the characteristic polynomial of A =

[
1 2
3 0

]
annihilates A.

Solution. f(x) = det (xI − A) then f(A) = Z.

f(x) = det

([
x− 1 −2
−3 x

])
= x2 − x− 6. Thus,

f(A) = A2 − A− 6I =

[
0 0
0 0

]
.

■

p. 95



MATB24: Eric Wu 7 POLYNOMIALS

Theorem 7.3.2.2 (Cayler-Hamilton Theorem). Let T ∈ L (V ) , dim(V ) < ∞ and f(X) =
det (xI − T ) be the characteristic polynomial for T. Then,

f(T ) = Z and f ∈ M(T ).

Similarly, if A is an n× n matrix with characteristic polynomial f(x),then f(A) = 0.

Proof. It suffices to prove the matrix version as [f(T )]β = f ([T ] β) . Let f(x) = det (xI − A) .
We know from the det section that A adj (A) = det (A) · I =⇒ (xI − A) adj (xI − A) =
det (xI − A) I = f(A)I =⇒ 0 = f(A) =⇒ f ∈ M(A).

Corollary 7.3.2.2.1. Let p be the monic polynomial for T and f be the characteristic
polynomial. Then, the minimal polynomial p divides the characteristic polynomial f.

Theorem 7.3.2.3. Let T ∈ L (V ) and c be a characteristic value. Show that (x− c) divides
te minimal; polynomal.

Corollary 7.3.2.3.1. The minimal polynomial has the same roots as the characteristic
polynomial

Theorem 7.3.2.4. The minimal polynomial has the same prime factors as the characteristic
polynomial.

Ex. Suppose the characteristic polynomial of A : C10 → C10 is f(x) = (x − 1)8(x +
1)(x− 2).

Solution. p = (x+ 1), (x− 2, . . . , (x− 1)8(x+ 1)(x− 2). We know

p = (x− 1)r (x+ 1)(x− 1) s.t. r ∈ N ∩ [1, 8].

■

Ex. Let

A =

 −9 4 4
−8 3 4
−16 8 7

 .

Compute the minimal polynomial of A. Note that f(x) = (x+ 1)2(x− 3). We check

f(x) = (x+ 1)(x− 3) = 0 or p(x) = (x+ 1)2(x− 3).
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7.4 Invariant Subspaces

Definition 7.4.1 (Invariant Subspaces). Let T ∈ V and let W be a subspace of V. Then W
is invariant under T if:

∀β ∈ W,T (β) ∈ W, i.e., T (W ) ⊆ W.

Ex. Let β = {e1, e2} ; [T ]β =

[
1 1
0 1

]
. Show that Span ({e1}) is invariant under T.

Solution.

[T (e1)]β =

[
1
0

]
=⇒ T (ce1) = c · e1 = ce1.

If v ∈ Span {e1} , then v = ce1. Note that T (ce1) = ce1 ∈ Span {e1} . Thus, Span {e1} is
invariant. ■

Exercise. Let W1 = V and W2 = {0} . Show that W1 and W2 are both invariant under
T. Ex. A vector space without nontrivial invariant subspace. Let T : R2 → R2 represented

in the standard basis by A =

[
0 −1
1 0

]
. Show the only invariant subspace is the trivial

invariant subspace.

Proof. Note that

det (xI − A) = det

{[
x 1
−1 x

]}
= x2 + 1.

Thus, as R is the field, x2 + 1 does not factor, that is, there are no eigenvalue. Sup-
pose for the sake of contradiction that there is an invariant subspace 1 dimensional W =
Span {α} s.t. α ̸= 0. By definition of an invariant subspace, Tα ∈ W =⇒ ∃c s.t. Tα = cα,
i.e., T has a characteristic value contradicting our observation that it has no eigenvalue.

Remarks 7.4.1.0.1. This exis theoretically significant. It tells us that we cannot achieve
“nice” matrix representations for vector spaces over an arbitrary field F because nontrivial
invariant subspaces may not exist. (Recall the comment that “nice” matrix representations
rely on the existence of nontrivial invariant subspaces.) Thus, we must choose a F better for
this cause. As we shall see, C is the perfect choice because of the Fundamental Theorem of
Algebra.

Ex.Consider the infinite-dimensional vector space F[x].
Let D : F[x] → F[x] be the differentiation operator.
Let W be the subspace of polynomials of degree less than or equal to n.

W =
{
f(x) = c0 + c1x+ . . .+ ckx

k
∣∣ cj ∈ F, k ≤ n

}
.

Then, W is invariant under D.
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Theorem 7.4.1.1 (Commuting Operators Provide Invariant Subspaces). Let T, U ∈ L (V ) s.t. TU =
UT, i.e., U and T are commutative. Let W = range(U) and N = ker(U). Then, W and N
are invariant under T.

Proof. Let v ∈ W. Then, v = Ux s.t. x ∈ W. Consider T (v). Note that

T (v) = T (Ux) = TU(x)

= UT (x)

= U(T (x)) ∈ range(U) = W.

Thus, T (V ) ∈ W. Let α ∈ ker (U) . Then, Uα = 0 =⇒ T (Uα) = 0 =⇒ u(Tα) = 0 =⇒
Tα ∈ ker (U) = N.

Definition 7.4.2 (Restriction Operator). Let W be invariant under the operator T . The
restriction operator TW : W → W induced by T is the linear operator TW defined by
TW (w) = T (w), for all w ∈ W . Note that since the domain of TW is W and the domain of
T is V, it may be the case that TW ̸= T .

Theorem 7.4.2.1 (Invariant Subspaces give block diagonal matrix representations). Let
V L be a finite dimensional vector space. et W be an invariant subspace under the linear
operator T . Then there exists a basis such that the matrix representation of T with respect
to this basis has the following form:

[T ]β =

[
B C
0 D

]
where β = β1 ∪ β2.

(The 0 is very nice.)
(We shall explain what β1, β2 mean in a moment.)

Proof. Let β1 = {α1, . . . , αj} be a basis for W. Then,

Tαi = a1,iv1, . . . , aj,ivj,∀i.

Let β2 = {αj+1, . . . , αn} be the set of vectors used to extend β1 to create a basis for V . Then,

Tαi = a1,iv1 + · · ·+ aj,ivj + 0(vj+1 + · · ·+ vn),∀i ∈ {1, . . . , j} .

That is,

[T ]β1,β2
=

[
B C
0 D

]
.
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Corollary 7.4.2.1.1 (Characteristic and Minimal Polynomial of a Restriction Operators
Divides those of the parent operator). Let W be an invariant subspace for T . Then the
characteristic polynomial (resp. minimal polynomial) for the restriction operator TW divides
the characteristic polynomial (resp. minimal polynomial) for T .

Proof. Here we prove only the characteristic polynomial result. As W is an invariant sub-
space, exists β = {β1, β2} s.t.

[T ]β1,β2
=

[
B C
0 D

]
Now show that

det
(
xI − [T ]β

)
= det (xI −B) · det (xI −D) .

As det (xI −B) is the characteristic polynomial of TW , it divides det
(
xI − [T ]β

)
which is

the characteristic polynomial of T .

Theorem 7.4.2.2. Let T ∈ L(V ) and let c1, · · · , cn be the distinct characteristic values of
T . Then there exists a basis β such that:

[T ]β =

[
diag(c1Id1 , · · · , ckIdk) C

0 D

]
where di = dim (ker (T − cI)) .

Proof. See lecture notes.

Corollary 7.4.2.2.1 (Sum Characterization of Diagonalizable). Let T ∈ L(V ), c1, . . . , ck
be the characteristic values and Wi = nullspace(T − ciI). The following are equivalent:

1. T is diagonalizable

2. W1 + · · ·+Wk = V

3. W1 ⊕ · · · ⊕Wk = V

Definition 7.4.3 (Conductor/Stuffer). Let V be an F vector space and T ∈ L(V ). Let W
be an invariant subspace for T , α be a vector in V . The *T-conductor* of α into W is the
set:

ST (α;W ) := {g ∈ F[x] : g(T )α ∈ W}

(i.e., the set of all polynomials g ∈ F[x] such that g(T )α is in W )
In the case that W = 0, we call ST (α; {0}) the *T-Annihilator* of α.
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Lemma 7.4.3.1 (Conductors Are Ideals). Let W be an invariant subspace for T, then
ST (α;W ) is a principal ideal in F [x] .

Definition 7.4.4 (T-Conductor). Since ST (α;W ) is a principal idea, it has a monic gener-
ator g. We call g the T-conductor of α onto W.

Remarks 7.4.4.0.1 (Computing the T-conductor using the minimal polynomial). Note
that as the minimal polynomials maps α → 0 ∈ W, the minimal polynomial of T is in
ST (α;W ) . Since the T-conductor generates the conductor, it follows that it divided the
minimal polynomial of T . Thus, the T-conductor is made of a product of the factors of the
minimal polynomial. This fact is useful in computing the T-conductor.

7.5 Triangularizability/Diagonalizability by Minimal Polynomial

Lemma 7.5.0.1. Let V be a finite-dimensional vector space over F. Let T ∈ L(V ) such
that the minimal polynomial for T is a product of linear factors:

p(x) = (x− c1)
d1 . . . (x− ck)

dk .

Let W be a proper subspace of V invariant under T . Then there exists vector α ∈ V
such that

1. α /∈ W

2. (T − ciI)α ∈ W. (α gets stuffed by T − ciI.)

Proof. Let β /∈ W. Let g be the T -Conductor of ST (β;W ). As the g divides the minimal
polynomial of T , there exists r1, · · · , rk, where ri ∈ {0, ..., di} for all i, such that

g(x) = (x− c1)
r1 . . . (x− ck)

rk s.t. at least one ci ̸= 0.

Redefine

g =
n∏

i=1

(x− λi), where n =
k∑

i=1

ri

. Then consider the sequence {g1, g2, ..., gn}, where

gj =

j∏
i=1

(x− λi).

As β /∈ W and gn(T )β ∈ W , there must exist an m ∈ {1, ..., n} such that

gm−1(T )β /∈ W and (T − λmI) gm−1(T )β = gm(T )β ∈ W.

Letting α = gm−1(T )β gives our result as α /∈ W , but (T − λmI)α ∈ W .

Definition 7.5.1 (Upper Triangulable). T ∈ L(V ) is triangulable if there exists an orghonom-
ral basis β for V s.t. [T ]β is upper or lower triangular.
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Remarks 7.5.1.0.1. Triangular metrices are connected with invariant subspaces :
Suppose β = {α1, . . . , αn} and

[T ]β =

a11 a12 . . . a1n
0 a22 . . . a2n

0 0 a33
...



Now define Wi in the following way.

W1 = span(α1)

W2 = span(α1, α2)

...

Wn−1 = span(α1, . . . , αn−1)

Wn = span(α1, . . . , αn)

The set W1, . . . ,Wn have a few very nice properties. (Here, we use subset to denote a
proper subset.)

1. (Well-ordered) W1 ⊂ W2 ⊂ · · · ⊂ Wn

2. (T -invariant) T (Wj) ⊆ Wi for all 1 ≤ j ≤ i ≤ n

If we show that a basis such that W1 ⊂ W2 ⊂ · · · ⊂ Wn and Wi is T -invariant for all i,
then T is triangulable.

To show that a subspace is invariant, we simply need to check a basis of the subspace is
invariant.

Theorem 7.5.1.1 (Invariant Subspace Characterization of Triangularbility). Let V be a F
vector space, T ∈ L(V ). The following are equivalent:

1. T is upper triangularizable.

2. There exists a basis {α1, . . . , αn} for V such that if Wi = span(α1, . . . , αi), then:

(a) (Well-ordered) W1 ⊂ W2 ⊂ · · · ⊂ Wn

(b) (T -invariant) T (Wj) ⊆ Wi for all 1 ≤ j ≤ i ≤ n

Theorem 7.5.1.2 (Characterizations of Triangularizability and Diagonalizability in terms
of the minimal polynomial: IMPORTANT). Let T ∈ L(V ) and dim(V ) = n < ∞. Then

1. T is triangularizable if and only if the prime factorization of the minimal polynomial
for T is a product of linear factors.

2. T is diagonalizable if and only if the prime factorization of the minimal polynomial for
T is a product of distinct linear factors.
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Proof. (1.) ⇒
Suppose [T ]β is triangularizable, then the characteristic polynomial for T is

f(x) = det
(
xI − [T ]β

)
= (x− ([T ]β)11) . . . (x− ([T ]β)nn)) = (x− c1)

dk . . . (x− ck)
dk

where ci are distinct characteristic values of T . Therefore, the minimal polynomial for T has
a similar form since it divides F (x), by the Cayley-Hamilton Theorem:

p(x) = (x− c1)
r1 . . . (x− ck)

r
k s.t. ri ∈ {0, . . . , di} and ∃ri ̸= 0.

(2.) ⇒
If T is diagonal, then p(x) = (x− c1) · · · (x− ck) is the minimal polynomial for T .

p
(
[T ]β

)
ij
=

{
p
(
[T ]β

)
ii
, i = j

0, i ̸= j
=⇒ p

((
[T ]β

)
ii

)
= 0∀i

=⇒ p
(
[T ]β

)
= 0.

(1.) ⇐
Suppose the minimal polynomial is a product of linear factors. Apply the previous lemma

to W = {0} to get α1. Then

(T − ciI)αi
∈ w =⇒ (T − ciI)α1

= 0

=⇒ Tα1 = ciαi ∈ Span ({α1}) .

Note that W1 is T -invariant. Now apply the previous lemma to W1 to get α2. Then

(T − cjI)α2
∈ W1 =⇒ (T − cjI)α2

= kα1 =⇒ Tα2 = cjα2 + kα1 ∈ Span ({α1, α2}) .

Let W2 = {α1, α2} Note that W2 is T -invariant. Continue this way until you have Wn = V .
By construction Wi ⊂ Wi+1,∀i ∈ {1, . . . , n− 1} and T (wj) ⊆ wi∀1 ≤ j, i ≤ n. Thus, T is
triangularizable.

(2.) ⇐ diagonalizability (Not diagonalizable ⇒ not distinct factors)
Suppose T is not diagonal. Suppose W is the subspace spanned by all the characteristic

vectors of T . If W = V , then T is diagonalizable as we proved earlier, which contradicts our
assumption.

Instead, suppose W ̸= V .
By the previous lemma, there exists a vector α /∈ W and a characteristic value ci of T

such that the vector
β = (T − ciI)α ∈ W.
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Let h(T ) be some polynomial. We have shown that h(T )β ∈ W . Now p = (x − ci)q,
for some polynomial q. We show q (ci) = 0. Pick h s.t. q (T ) − q (ci) = (T − ci)h (T ) ,
i.e.,q − q (ci) = (x− ci)h. As p (T )α = 0 and p (T )α = (T − ci) (q (T )α) ,

q (T )α is an eigenvector,

thus q (T )α ∈ W. As q (T )α = q (ci)α = h(T )β = h(T )β − q (T )α ∈ W. But α /∈ W. Thus,
q (ci) = 0. Thus, (x− ci) |q (x) , i.e., p (x) has the linear factor (x− ci) at least twice.

Corollary 7.5.1.2.1. Every Operator over C vector space is triangularizable.

Corollary 7.5.1.2.2. Sps T ∈ L (V ) and f is the characteristic polynomial of T. Then,

1. if f is a product of linear factors T is triangularizable.

2. if f is a product of distinct linear factors, then T is diagonalizable.

Ex. Let T : R2 → R2 be represented by A =

[
0 −1
1 0

]
. Determine if T is triangularizable;

if so, is it diagonalizable.

Solution. det (xI − A) = det(

[
x 1
−1 x

]
) = x2+1. As the discriminant is negative, x2+1 has

no real roots. Thus, x2 +1 is prime over R. Therefore the characreristic polynomial is not a
porduct of linear factors. Thus, T is neither triangularizable nor diagonalizable. ■

Ex. What if T : C2 → C2.

Solution. det (xI − A) = det(

[
x 1
−1 x

]
) = x2 + 1 = (x − i)(x + i). As the characteristic

polynomial is a product of distinct linear factors, T is both triangularizable and diagonaliz-
able. ■

Ex. Let A =

0 1 0
2 −2 2
2 −3 2

. Is A similar to a triangular matrix over R?

Solution.

det

x 1 0
2 x+ 2 2
2 −3 x− 2

 = x [(x+ 2) (x− 2) + 6] + [−2(x− 2)− 4] = x3.

Thus, it is triangularizable but not diagonalizable. ■

Remarks 7.5.1.2.1. We have shown that every operator over a C vector space admits a
triangular matrix representation. Turns out another matrix representation is nice in the
following sense.
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Definition 7.5.2 (Block Diagonal Matrices). A matrix A is a block diagonal matrix if

A = diag (A1, . . . , Ak) =

A1 0 0

0
. . . 0

0 0 Ak

 s.t. Ai is a square matrix.

Note that this study will eventually lead to an improvement: the Jordan Canonical Form:A
n
1 0 0

0
. . . 0

0 0 An
k


7.6 Direct-Sum Decomposition and Projection

Definition 7.6.1 (Independent Subsets). Let W1, . . . ,Wk be subspaces of V. The subspaces
W1, . . . ,Wk are said to be independent if

∑k
i=1 αi = 0 s.t. αi ∈ Wi =⇒ αi = 0, ∀i.

Remarks 7.6.1.0.1 (Equivalence). Note that it is equivalent to say

1. ∀j ∈ {2, . . . , k} ,Wj ∩ {W1 + · · ·+Wj−1} = 0

2. If β1, . . . , βk are ordered basis forW1, . . . ,Wk, then the concatenation, β = {β1, . . . , βk} ,
is a basis forW1⊕· · ·⊕Wk. The final sum is called the direct sum andW = W1⊕· · ·⊕Wk.

Ex. Let α1, α2, α3 ∈ R3 be linearly independent. Let W1 = Span ({α1, . . . , α2}) . Let
α3 ∈ V be a vector not in W1. Let W2 = Span ({α3}) . Then,

R3 = W1 ⊕W2.

Ex. If {α1, . . . , αn} is any basis for V with W1 = Span {α1} ,W2 = Span {α2} , . . . ,Wn =
Span {αn} . Show that V = W1 ⊕ · · · ⊕Wn.

Theorem 7.6.1.1. Let T ∈ L (V ) with c1, . . . , cn be the distinct characteristic values for
T and Wi = ker (T − ciI) , j = 1, . . . , k. Then, the set {W1, . . . ,Wn} is linearly independent.
T is diagonalizable ⇐⇒ V = W1 ⊕ · · · ⊕Wn = W1 + · · ·+Wn.

Definition 7.6.2 (Generalized Projection). A projection on V is an operator E ∈ L (V ) s.t. E2 =
E. (A matrix A is a projection matrix if A2 = A.)

Ex. Prove any projection matrix A has eigenvalues 0 and 1.
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Theorem 7.6.2.1 (Properties of Projections). There are four well-known properties of pro-
jections. Let R = range (E) and N = ker (E) .

1. β ∈ R ⇐⇒ E (β) = β.

2. ∀α ∈ V,Eα ∈ R and (I − E) (α) ∈ N.

3. V = R⊕N(∀α ∈ V, α = Eα+ (I − E)α).

4. E is diagonalizable. ∃a basis β s.t. [E]β =

[
I 0
0 0

]
.

E is called the projection onto R along N.

Ex. Find a projection E that porjects R2 ontoR = Span {(1, 2)} alongN = Span {3,−1} .
We can define E by E(x1, x2) = E (a1α1 + bα2) for β = {α1, α2} which explicitly gives

E (x1, x2) = a(1, 2) =
x1 + 3x2

7
=

(
x1 + 3x2

7
,
2x2 + 6x2

7

)
.

As Eα1 = α1 and Eα2 = 0 =⇒ [E]{α1,α2} =

[
1 0
0 0

]
. Now we show that E is a projection.

E2 = E. As [E2]β = [E]β , E
2 = E. Thus, E is a projection,

[E]{e1,e2} =

[
1 3
2 −1

] [
1 0
0 0

] [
1 3
2 −1

]−1

.

Note that the column on the left of P is the range and on the right is the null.
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Theorem 7.6.2.2. Sps V = ⊕k
i=1Wi, then ∃E1, . . . , Ek ∈ L (V ) s.t.

1. E2
j = Ej,∀j

2. ∀i ̸= j, EiEj = 0

3. I =
∑k

i=1Ei

4. range (Ei) = Wi,∀i.

Proof. Let βi = {αi,1, . . . , αi,n} be a basis for Wi. Then, β = {β1, . . . , βn} is a basis for V.
Using the basis for β, we can define Ej ∈ L(V ) for j = 1, . . . , d,

Ej (αik) =

{
αik, i = j

0, i ̸= j

Given this definition for Ei show that all conditions are satisfied.

E2
j =

{
Ej (αik) , i = j

Ej (0) , i ̸= j
=

{
αik, i = j

0, i ̸= j

Then,

i ̸= j =⇒ EiEj (αlk) =

{
Ei (αlk) , l = j

Ei (0) , l ̸= j
=

{
0, l = j

0, l ̸= j
=⇒ (Ei ̸= Ej =⇒ EiEj = 0).

Thus,
(Ei + Ej) (Ei + Ej) = E2

i + E2
j = Ei + Ej,∀i ̸= j.

7.7 Invariant Direct Sums

Definition 7.7.1 (Direct Sum of Linear Transformations). Suppose T ∈ L (V ) and V =
⊕k

j=1Wj s.t. Wj is invariant for T. Let Tj be the representation of T → Wj. As V is a
direct sum, every vector α ∈ V is represented uniquely by vectors in W1, . . . ,Wk, i.e., ∀α =
α1 + · · ·+ αk ∈ V . Applying T to α gives T (α) = T1α1 + · · ·+ Tkαk. Then we say T is the
direct sum of Tj ∈ L (Wj) and we write T = ⊕k

j=1Tj.
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Theorem 7.7.1.1 (Block diagonal form from an invariant direct sum). Let V =
⊕k

j=1Wj

with each Wj invariant under T ∈ L(V ). For each j, let Tj := T |Wj
∈ L(Wj). Then there

exists a basis β of V such that

[T ]β =


[T1]β1 0 · · · 0
0 [T2]β2 · · · 0
...

...
. . .

...
0 0 · · · [Tk]βk


where βj is a basis of Wj and β = β1 ∪ · · · ∪ βk.

Proof. Pick a basis βj for each Wj and set β = β1 ∪ · · · ∪ βk. Because V is a direct sum,

every v ∈ V is uniquely v =
∑k

j=1 vj with vj ∈ Wj. Since T (Wj) ⊆ Wj, applying T to a basis
vector from Wj yields a linear combination of vectors only in Wj. Hence, in the basis β, the
columns corresponding to βj have nonzero entries only in the rows corresponding to βj, and
there are no cross terms between different Wi and Wj. Therefore [T ]β is block diagonal with
diagonal blocks [Tj]βj

.

Theorem 7.7.1.2 (Invariance ⇐⇒ commuting with projections). Let V =
⊕k

j=1 Wj and

let Ej ∈ L(V ) be the projection onto Wj (so E2
j = Ej, range(Ej) = Wj, and EiEj = 0 for

i ̸= j,
∑

i Ei = I). Then

Wj is invariant under T ⇐⇒ TEj = EjT.

Proof. (⇒) Assume T (Wj) ⊆ Wj. For any v ∈ V , Ejv ∈ Wj and hence T (Ejv) ∈ Wj. As
Ej acts as the identity on Wj, EjTEjv = TEjv. Writing v = Ejv + (I − Ej)v and using
Ej(I − Ej) = 0 gives EjTv = TEjv, i.e. EjT = TEj.

(⇐) Assume TEj = EjT . For w ∈ Wj we have Ejw = w, hence Tw = TEjw = EjTw ∈
range(Ej) = Wj. Thus Wj is invariant.
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Theorem 7.7.1.3. Let T ∈ L (V ) , dim (V ) < ∞. Sps T is diagonalizable and c1, . . . , ck are
the distinct characteristic values of T. Then, ∃E1, . . . , Ek ∈ L (V ) s.t.

1. T = c1E1 + · · ·+ ckEk

2. I = E1 + · · ·+ Ek

3. EiEj = 0, ∀i ̸= j

4. E2
i = Ei, ∀i

5. range(Ei) = ker (T − ciI) , which is the characteristic space of ci for T.

Proof. Sps T is diagonalizable with distinct characteristic values c1, . . . , ck. Let Wi be the
space of characteristic vectors associated with the characteristic values ci. As we have seen
V = W1+· · ·+Wk. Let E1, . . . , Ek be the projection ontoWi alongW1+· · ·+Wi−1+Wi+1+Wk.
We have shown that α = Iα = E1α + . . . Ekα and so Tα = TE1α + · · · + TEkα, i.e.,
T = c1E1 + · · ·+ ckEk.

Theorem 7.7.1.4 (Lagrange Polynomial to Compute Ei). If T is diagonalizable with char-
acteristic values c1, . . . , ck, we can compute the projection Ei using Lagrange Polynomials:
for 1 ≤ j ≤ k,

pj (x) :=
∏
i ̸=j

x− ci
cj − ci

=
x− c1
cj − c1

. . .
x− cj−1

cj − cj−1

x− cj+1

cj − cj+1

. . .
x− ck
cj − ck

.

Then, pj (T ) = Ej.

Exercise. Show that pj (T ) = Ej.
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Ex. Let

A =

[
2 0
0 3

]
.

Solve for E1, . . . , Ek such that

1. A =
∑k

i=1 ciEi

2. I =
∑k

i=1 Ei, EiEj = 0 for i ̸= j

3. E1E2 = 0

4. E2
1 = E1 and E2

2 = E2

5. range(Ei) = nullspace(A− ciI)

Ex. Let T : R3 → R3 be represented in the standard basis by

A =

 −9 4 4
−8 3 4
−16 8 7

 .

Determine if A is diagonalizable. If so, compute E1, . . . , Ek such that:

1. A =
∑k

i=1 ciEi

2. I =
∑k

i=1 Ei, EiEj = 0 for i ̸= j

3. E1E2 = 0

4. E2
1 = E1 and E2

2 = E2

5. range(Ei) = nullspace(A− ciI)

Remarks 7.7.1.4.1 (Non-Diagonalizable and Non-Triangularizable Matrices). We started
the discussion about direct sum decompositions to create block diagonal matrices. We have
shown that T is a direct sum of linear transformations if and only if T is block diagonalizable.
In order to show that T is a direct sum of linear transformations we need to decompose V
into a direct sum of invariant subspaces. Can we always do this?

It turns out the answer is yes! In the upcoming sections, we shall explore two ways
to decompose V into the direct sum of invariant subspaces. The first technique, called the
primary decomposition theorem, uses the prime factors of the characteristic polynomial. The
second technique, called the cyclic decomposition theorem, uses the minimal polynomial.

While we will leave the proofs for both types of decompositions, the proofs are quite
fascinating, and I encourage anyone interested in them to explore them further.
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8 Decomposition and Jordan

8.1 The Primary Decomposition and Cyclic Decomposition

Definition 8.1.1 (T-annihilators of a vector). Let α ∈ V. Then,M (α;T ) = {f ∈ P (F) s.t. f(T )α = 0}
is the T-annihilator of α.

Proposition 8.1.1.1. M (α;T ) is an ideal.

Definition 8.1.2 (T-annihilator). The monic generator ofM (α;T ) is called the T-annihilator
of α.

Proposition 8.1.2.1 (A vector exists with T annihilator equal to the minimal polynomial).
Let V be a finite-dimensional vector space, T ∈ L(V ) and p(x) be the minimal polynomial
of T . Let deg(p) = k, p(x) = p1(x)

r1 · · · pk(x)rk be the prime factorization of p. Then for
each i there exists a vector α ∈ V such that the T -annihilator of α is pi(T )

ri .

Theorem 8.1.2.2 (Primary Decomposition Theorem). Let T ∈ L(V ), dim(V ) < ∞. Let
p(x) be the minimal polynomial for T with prime factorization

p(x) = p1(x)
r1 · · · pk(x)rk ,

(i.e., the pj are distinct irreducible monic polynomials and rj ≥ 1).
Let Wj = nullspace(pj(T )

rj) for j = 1, . . . , k. Then:

1. V = W1 ⊕ · · · ⊕Wk

2. Wi is T invariant, ∀i

3. If Twi
is the restriction of T to Wi, then the minimal polynomial of Twi

is prii .
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Proof. Write mT =
∏k

i=1 p
ri
i and, for each i, set

qi(x) :=
mT (x)

pi(x)ri
=
∏
j ̸=i

pj(x)
rj .

Note that gcd
(
qi, p

ri
i

)
= 1 for every i.

Step 1: Construct commuting projections. Because the polynomials q1, . . . , qk are
pairwise coprime, there exist polynomials c1, . . . , ck ∈ F[x] such that

k∑
i=1

ci(x) qi(x) = 1. (1)

(Proof by induction using Bézout’s identity.) Define

Ei := ci(T ) qi(T ) ∈ L(V ).

From (1) we get
∑k

i=1 Ei = IV . Moreover, for i ̸= j we have qi(x)qj(x) divisible by mT (x),
hence

EiEj = ci(T )cj(T ) qi(T )qj(T ) = 0,

becausemT (T ) = 0. Finally, sincemT = prii qi, there exist polynomials ai, bi with ai(x)qi(x)+
bi(x)pi(x)

ri = 1; evaluating at T shows

Ei = ci(T )qi(T ) ≡ 1 (mod pi(T )
ri) and Ei ≡ 0 (mod pj(T )

rj) (j ̸= i). (2)

Step 2: Identify ranges with the primary kernels. We claim Im(Ei) = Wi.
Inclusion ⊆. Since mT = prii qi, we have

pi(T )
riEi = pi(T )

rici(T )qi(T ) =
(
cimT

)
(T ) = 0,

so Im(Ei) ⊆ ker
(
pi(T )

ri
)
= Wi.

Inclusion ⊇. If w ∈ Wi, then pi(T )
riw = 0. Applying (2) to w yields

w = Eiw + bi(T )pi(T )
riw = Eiw,

so w ∈ Im(Ei). Hence Im(Ei) = Wi.

Step 3: Direct-sum decomposition. From
∑

i Ei = IV and Im(Ei) = Wi we obtain

V =
∑k

i=1Wi. If
∑

iwi = 0 with wi ∈ Wi, then applying Ej and using Ej|Wj
= I and

Ej|Wi
= 0 for i ̸= j (by (2)) gives wj = 0 for each j. Thus the sum is direct, establishing (1).

Step 4: T -invariance. For any polynomial f we have Tf(T ) = f(T )T . Hence

v ∈ Wi =⇒ pi(T )
riv = 0 =⇒ pi(T )

ri(Tv) = T pi(T )
riv = 0,

so Tv ∈ Wi. This proves (2).
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Step 5: Minimal polynomials on the primary components. First, pi(T )
ri annihilates

Wi by definition, hence the minimal polynomial mTWi
divides prii ; write mTWi

= psii with

0 < si ≤ ri. Because V = W1⊕· · ·⊕Wk and eachWi is T -invariant, the operator
∏k

i=1 pi(T )
si

acts as 0 on eachWi, hence on V . ThereforemT divides
∏

i p
si
i , i.e. ri ≤ si for all i. Combining

si ≤ ri with ri ≤ si forces si = ri, so mTWi
= prii , proving (3).
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Remarks 8.1.2.2.1. Let us now point out some important observations regarding the pri-
mary decomposition theorem:

1. The minimal polynomial of each of the Ti are a power of a single prime factor.

2. If the characteristic polynomial has the same prime factors as the minimal polynomial
(i.e. f(x) = p1(x)

d1 · · · pk(x)dk) then

dim (Wi) = deg (pi) · di.

Ex. Let V be a real vector space. Let T ∈ L(V ) such that the characteristic polynomial
is

f(x) = (x− 3)2(x2 + 1)2(x− 1)

and the minimal polynomial is

p(x) = (x− 3)(x2 + 1)(x− 1).

Using the primary decomposition theorem, decompose V and provide the minimal polyno-
mial of each subspace Wi and dim(Wi).

Solution. f1(x) = (x− 3)2 , f2(x) = (x2 + 1)
2
, f3 (x) = (x− 1) ; p1 (x) = (x− 3) , p2 (x) =

(x2 + 1) , P3 (x) = (x− 1) . For W1, the min polynomial

p1 (x) = (x− 3) , dim (W1) = deg (x− 3) · 2 = 2.

For W2,the min polynomial is x2 + 1. Thus,

deg (W2) = deg
(
x2 + 1

)
· 2 = 4.

For W3, the min polynomial is x− 1. In particular, dim (W2) = deg (x− 1) · 1 = 1. Thus,

∃β s.t. [T ]β =

A1

A2

A3


where A1 ∈ M2×2, A2 ∈ M4×4, A3 ∈ M1×1, s.t. pj (Aj) = 0, ∀j. ■

p. 113



MATB24: Eric Wu 8 DECOMPOSITION AND JORDAN

Theorem 8.1.2.3 (Cyclic-Subspaces). Let α ∈ V and p be the T -annihilator of α. Let
deg(p) = k. Then

1. {α, Tα, · · · , T k−1α} is linearly independent.

2. span({α, Tα, · · · , T k−1α}) is T -invariant.

The set
Z(α;T ) = span({α, Tα, · · · , T k−1α})

is called the cyclic subspace of α.

Theorem 8.1.2.4 (Cyclic subspace generated by α). Let T ∈ L(V ) and α ∈ V . Let p ∈ F[x]
be the T -annihilator of α, i.e. the monic polynomial of least degree such that p(T )α = 0.
Write deg p = k. Then

1. {α, Tα, . . . , T k−1α} is linearly independent;

2. W := span{α, Tα, . . . , T k−1α} is T -invariant.

Proof. (1) Linear independence. Suppose
∑k−1

j=0 cjT
jα = 0 with scalars cj. Set q(x) :=∑k−1

j=0 cjx
j. Then q(T )α = 0 and deg q ≤ k − 1 < k = deg p. By the minimality of p, the

only polynomial of degree < k that annihilates α is the zero polynomial; hence cj = 0 for all
j. Thus the listed k vectors are linearly independent.

(2) T -invariance. Let W = span{α, Tα, . . . , T k−1α}. Since p is the monic annihilator,
write

p(x) = xk + bk−1x
k−1 + · · ·+ b1x+ b0,

so p(T )α = 0 gives

T kα = −
k−1∑
j=0

bjT
jα ∈ W. (3)

Take any v =
∑k−1

j=0 ajT
jα ∈ W . Then

Tv =
k−1∑
j=0

ajT
j+1α = ak−1T

kα +
k−2∑
j=0

ajT
j+1α ∈ W,

using (3). Hence T (W ) ⊆ W , i.e. W is T -invariant.
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Theorem 8.1.2.5 (Matrix representation of a cyclic subspace). Let V be a vector space,
α ∈ V , T ∈ L(V ), p(x) = xn + an−1x

n−1 + · · · + a1x + a0 be the T -annihilator of α, β =
{α, Tα, . . . , T n−1α} be a basis for Z(α;T ), TZ be the linear operator defined by restriction
of T onto the subspace Z(α;T ). Then

[TZ ]β = C(p) =


0 0 · · · 0 −a0
1 0 · · · 0 −a1
0 1 · · · 0 −a2
...

...
. . .

...
...

0 0 · · · 1 −an−1


Furthermore, the minimal polynomial and characteristic polynomial of TZ are both equal

to p(x). We call the matrix C(p) the companion matrix of the polynomial p.

Theorem 8.1.2.6 (Cyclic Decomposition Theorem). Let T ∈ L(V ), f(x) = p1(x)
d1 · · · pk(x)dk

be the characteristic polynomial and p(x) = p1(x)
r1 · · · pk(x)rk be the minimal polynomial.

Then there exists α1, . . . , αj such that

1. V = Z(α1;T )⊕ · · · ⊕ Z(αj;T ),

2. p = p1,

3. pi divides pi−1 for all i ∈ {2, . . . , j},

where pj is the minimal polynomial of Z(αj;T ). Note that by construction

f = p1p2 · · · pj.
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Lemma 8.1.2.7. Let T ∈ L(V ), p be the minimal polynomial of T , and α ∈ V such that p
is the T -annihilator of α. Then there exists W ⊂ V such that:

1. V = Z(α;T )⊕W

2. W is T -invariant.

Remarks 8.1.2.7.1 (Significance of the Cyclic Decomposition Theorem). The Cyclic De-
composition Theorem tells us that every finite-dimensional vector space can be written as
the direct sum of cyclic invariant subspaces. This has the following important consequences
for matrix representations of linear transformations:

Let T ∈ L(V ) with characteristic polynomial f and minimal polynomial p. Then there
exists a basis β such that

[T ]β =


C(p1) 0 · · · 0

0 C(p2)
. . .

...
...

. . . . . . 0
0 · · · 0 C(pj)

 ,

where p = p1, pi divides pi−1 for all i, and f = p1 · · · pj, and C(pi) are the companion
matrices of the polynomial pi.

Definition 8.1.3 (The Rational Canonical Form). Let T ∈ L(V ). Then [T ]β is in Rational
Canonical Form if

[T ]β =


C(p1) 0 · · · 0

0 C(p2)
. . .

...
...

. . . . . . 0
0 · · · 0 C(pj)

 ,

where C(pi) are the companion matrices of the polynomial pi, p = p1, pi divides pi−1 for
all i, and f = p1 · · · pj.

Theorem 8.1.3.1. Two matrices are similar if and only if they have the same rational form.
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Ex.Let V be a real vector space. Let T ∈ L(V ) with characteristic polynomial

f(x) = (x− 2)2(x− 3)3(x2 + 1)

and minimal polynomial
p(x) = (x− 2)(x− 3)(x2 + 1).

Construct the rational canonical form of T .

Solution. Z(α1;T ) has min polynomial p(x) = (x− 2) (x− 3) (x2 + 1) . Then, for W1,

fw1·p1 = f =⇒ f

p1
= fw1 =⇒ fw1 =

(x− 2)2 (x− 3)3 (x2 + 1)

(x− 2) (x− 3) (x2 + 1)
=⇒ fw1 = (x− 2) (x− 3)2 .

Thus, pw1 containts all rots of fw1 and pw1|p2. Since p2|p1. Thus, we have

pw1 = (x− 2)k1 (x− 3)k2 s.t. pw1| (x− 2) (x− 3)
(
x2 + 1

)
.

It follows that pw1 = (x− 2) (x− 3) . Z (α2;T ) has min polynomial p2 (x) = (x− 2) (x− 3) .

Thus, fw2 =
fw1

p2
= (x−2)(x−3)2

(x−2)(x−3)
= (x− 3) . Note that pw2|pw1 =⇒ pw2| (x− 2) (x− 3) . Thus,

pw2 = (x− 3)k1 s.t. pw2| (x− 2) (x− 3) =⇒ pw2 = (x− 3) .

Lastly, Z (α3;T ) with minimal polynomial (x− 3) . Thus,

V = Z (α1;T )⊕Z (α2;T )⊕Z (α3;T ) s.t.


p1(x) = (x− 2) (x− 3) (x2 + 1) = x4 − 5x3 + 7x2 − 5x+ 6

p2(x) = (x− 2) (x− 3) = x2 − 5x+ 6

p3(x) = (x− 3) .

Now, we construct the rational form.

[T ]β =




1 0 0 0 −6
0 1 0 0 5
0 0 1 0 −7
0 0 0 1 5

 [0] [0]

[0]

[
0 −6
1 5

]
[0]

[0] [0] 3


■
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Ex. Decompose the rational cononical form of T further by applying the primary decompo-
sition theorem.

Solution. We know that

W1 = W11 ⊕W12 ⊕W13 s.t. p11 (x) = x− 2, p12 (x) = x− 3, p22 (x) = x2 + 1

W2 = W21 ⊕W22 s.t. p21 (x) = (x− 2) , p22 (x) = (x− 3) .

Thus,
[T ]β =

[
fillitup

]
■

8.2 Jordan Canonical Form

Definition 8.2.1 (Jordan Blocks and Jordan Canonical Form). Suppose T ∈ L(V ). A basis
of V is called a Jordan basis for T if with respect to this basis T has a block diagonal matrix

A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · Ap

 ,

in which each Ak is an upper-triangular matrix of the form

Ak =


λk 1 0 · · · 0
0 λk 1 · · · 0
...

...
. . . . . .

...
0 0 · · · λk 1
0 0 · · · 0 λk

 .

A matrix in this form is said to be in Jordan Canonical Form.
In such a case, these blocks are called Jordan Blocks.
A matrix representation of T in Jordan Canonical Form is said to be a Jordan Canonical

form for T .

p(x) = (x− λ)4 .

Then, we have 
λ 0 0 0
1 λ 0 0
0 1 λ 0
0 0 1 λ


we have a jordan block if p(x) = (x− λ)k.
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Theorem 8.2.1.1 (Jordan Basis Exist for triangularizable linear transformations). Let V
be a finite-dimensional vector space over F, T ∈ L(V ).

If T is triangularizable, there exists a Jordan Basis for T .
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